Question Number 148522 by mathdanisur last updated on 28/Jul/21
Answered by Rasheed.Sindhi last updated on 29/Jul/21
$${P}\left({x}\right)=\mathrm{16}{x}^{\mathrm{2}} +\mathrm{24}{x}+\mathrm{9} \\ $$$${Q}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{2} \\ $$$${If}\:{x}=−\mathrm{1}.\mathrm{25} \\ $$$$\frac{{P}^{\mathrm{3}} +{Q}^{\mathrm{3}} }{{P}^{\mathrm{2}} −{PQ}+{Q}^{\mathrm{2}} }+\frac{{P}^{\mathrm{3}} −{Q}^{\mathrm{3}} }{{P}^{\mathrm{2}} +{PQ}+{Q}^{\mathrm{2}} }=?\: \\ $$$$\frac{{P}^{\mathrm{3}} +{Q}^{\mathrm{3}} }{{P}^{\mathrm{2}} −{PQ}+{Q}^{\mathrm{2}} }+\frac{{P}^{\mathrm{3}} −{Q}^{\mathrm{3}} }{{P}^{\mathrm{2}} +{PQ}+{Q}^{\mathrm{2}} } \\ $$$$=\left({P}+{Q}\right)+\left({P}−{Q}\right) \\ $$$$=\mathrm{2}{P}=\mathrm{2}\left(\mathrm{16}{x}^{\mathrm{2}} +\mathrm{24}{x}+\mathrm{9}\right) \\ $$$$\:\:\:\:\:=\mathrm{2}\left(\mathrm{16}\left(−\frac{\mathrm{5}}{\mathrm{4}}\right)^{\mathrm{2}} +\mathrm{24}\left(−\frac{\mathrm{5}}{\mathrm{4}}\right)+\mathrm{9}\right) \\ $$$$\:\:\:\:\:=\mathrm{2}\left(\mathrm{16}\left(\frac{\mathrm{25}}{\mathrm{16}}\right)−\mathrm{6}\left(\mathrm{5}\right)+\mathrm{9}\right) \\ $$$$\:\:\:\:\:=\mathrm{2}\left(\mathrm{25}−\mathrm{30}+\mathrm{9}\right)=\mathrm{2}\left(\mathrm{4}\right)=\mathrm{8} \\ $$$$ \\ $$
Commented by mathdanisur last updated on 28/Jul/21
$${Cool}\:{Ser},\:{thank}\:{you} \\ $$
Answered by Olaf_Thorendsen last updated on 28/Jul/21
$$\mathrm{R}\:=\:\frac{{P}^{\mathrm{3}} +{Q}^{\mathrm{3}} }{{P}^{\mathrm{3}} −{PQ}+{Q}^{\mathrm{2}} }+\frac{{P}^{\mathrm{3}} −{Q}^{\mathrm{3}} }{{P}^{\mathrm{3}} +{PQ}+{Q}^{\mathrm{2}} } \\ $$$$\mathrm{R}\:=\:\frac{\left({P}+{Q}\right)\left({P}^{\mathrm{2}} −{PQ}+{Q}^{\mathrm{2}} \right)}{{P}^{\mathrm{3}} −{PQ}+{Q}^{\mathrm{2}} }+\frac{\left({P}−{Q}\right)\left({P}^{\mathrm{2}} +{PQ}+{Q}^{\mathrm{2}} \right)}{{P}^{\mathrm{3}} +{PQ}+{Q}^{\mathrm{2}} } \\ $$$$\mathrm{R}\:=\:{P}+{Q}+{P}−{Q}\:=\:\mathrm{2}{P} \\ $$$${R}\left(−\frac{\mathrm{5}}{\mathrm{4}}\right)\:=\:\mathrm{2}\left(\mathrm{16}.\frac{\mathrm{25}}{\mathrm{16}}−\mathrm{24}.\frac{\mathrm{5}}{\mathrm{4}}+\mathrm{9}\right) \\ $$$${R}\left(−\frac{\mathrm{5}}{\mathrm{4}}\right)\:=\:\mathrm{8} \\ $$
Commented by mathdanisur last updated on 28/Jul/21
$${Cool}\:{Ser},\:{thank}\:{you} \\ $$