Menu Close

Question-148776




Question Number 148776 by liberty last updated on 31/Jul/21
Answered by mathmax by abdo last updated on 31/Jul/21
P=Π_(k=2) ^(2020)  (k^2 /(k^2 −1))=Π_(k=2) ^(2020)  (k/(k−1))×(k/(k+1))  =Π_(k=2) ^(2020)  (k/(k−1))×Π_(k=2) ^(2020)  (k/(k+1))  =(2/1)×(3/2)×(4/3).....((2019)/(2018))×((2020)/(2019))×(2/3).(3/4).(4/5).....((2019)/(2020)).((2020)/(2021))  =2020×(2/(2021)) =((4040)/(2021))
$$\mathrm{P}=\prod_{\mathrm{k}=\mathrm{2}} ^{\mathrm{2020}} \:\frac{\mathrm{k}^{\mathrm{2}} }{\mathrm{k}^{\mathrm{2}} −\mathrm{1}}=\prod_{\mathrm{k}=\mathrm{2}} ^{\mathrm{2020}} \:\frac{\mathrm{k}}{\mathrm{k}−\mathrm{1}}×\frac{\mathrm{k}}{\mathrm{k}+\mathrm{1}} \\ $$$$=\prod_{\mathrm{k}=\mathrm{2}} ^{\mathrm{2020}} \:\frac{\mathrm{k}}{\mathrm{k}−\mathrm{1}}×\prod_{\mathrm{k}=\mathrm{2}} ^{\mathrm{2020}} \:\frac{\mathrm{k}}{\mathrm{k}+\mathrm{1}} \\ $$$$=\frac{\mathrm{2}}{\mathrm{1}}×\frac{\mathrm{3}}{\mathrm{2}}×\frac{\mathrm{4}}{\mathrm{3}}…..\frac{\mathrm{2019}}{\mathrm{2018}}×\frac{\mathrm{2020}}{\mathrm{2019}}×\frac{\mathrm{2}}{\mathrm{3}}.\frac{\mathrm{3}}{\mathrm{4}}.\frac{\mathrm{4}}{\mathrm{5}}…..\frac{\mathrm{2019}}{\mathrm{2020}}.\frac{\mathrm{2020}}{\mathrm{2021}} \\ $$$$=\mathrm{2020}×\frac{\mathrm{2}}{\mathrm{2021}}\:=\frac{\mathrm{4040}}{\mathrm{2021}} \\ $$
Commented by liberty last updated on 31/Jul/21
nice sir
$$\mathrm{nice}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *