Menu Close

Question-148835




Question Number 148835 by DELETED last updated on 31/Jul/21
Answered by DELETED last updated on 31/Jul/21
Lihat Hambatan Seri satu  R_(s1) =R_(1Ω) +R_(3Ω) +R_(4Ω)   R_(s1) =1+3+4=8 Ω  Lihat Hambatan Paralel  (1/R_p ) = (1/R_(s1) ) + (1/R_(8Ω) ) = (1/8)+(1/8) =(1/4)  R_p =4 Ω  Lihat Hambatan Seri dua  R_(total) =R_(s2) =R_(16Ω) +R_(5Ω) +R_p          =16+5+4=25Ω  i_(total) =(V/R_(total) ) =((12.5)/(25)) =0.5 A  i_(total ) =i_p =0.5 A  V_p =i_p ×R_p =0.5×4=2 V  V_p =V_(s1)  =2 V  i_(s1) =(V_(s1) /R_(s1) ) = (2/8)=0.25 A  i_(s1) =i_(4Ω) =0.25 A//
$$\mathrm{Lihat}\:\mathrm{Hambatan}\:\mathrm{Seri}\:\mathrm{satu} \\ $$$$\mathrm{R}_{\mathrm{s1}} =\mathrm{R}_{\mathrm{1}\Omega} +\mathrm{R}_{\mathrm{3}\Omega} +\mathrm{R}_{\mathrm{4}\Omega} \\ $$$$\mathrm{R}_{\mathrm{s1}} =\mathrm{1}+\mathrm{3}+\mathrm{4}=\mathrm{8}\:\Omega \\ $$$$\mathrm{Lihat}\:\mathrm{Hambatan}\:\mathrm{Paralel} \\ $$$$\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{p}} }\:=\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{s1}} }\:+\:\frac{\mathrm{1}}{\mathrm{R}_{\mathrm{8}\Omega} }\:=\:\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{8}}\:=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{R}_{\mathrm{p}} =\mathrm{4}\:\Omega \\ $$$$\mathrm{Lihat}\:\mathrm{Hambatan}\:\mathrm{Seri}\:\mathrm{dua} \\ $$$$\mathrm{R}_{\mathrm{total}} =\mathrm{R}_{\mathrm{s2}} =\mathrm{R}_{\mathrm{16}\Omega} +\mathrm{R}_{\mathrm{5}\Omega} +\mathrm{R}_{\mathrm{p}} \\ $$$$\:\:\:\:\:\:\:=\mathrm{16}+\mathrm{5}+\mathrm{4}=\mathrm{25}\Omega \\ $$$$\mathrm{i}_{\mathrm{total}} =\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{total}} }\:=\frac{\mathrm{12}.\mathrm{5}}{\mathrm{25}}\:=\mathrm{0}.\mathrm{5}\:\mathrm{A} \\ $$$$\mathrm{i}_{\mathrm{total}\:} =\mathrm{i}_{\mathrm{p}} =\mathrm{0}.\mathrm{5}\:\mathrm{A} \\ $$$$\mathrm{V}_{\mathrm{p}} =\mathrm{i}_{\mathrm{p}} ×\mathrm{R}_{\mathrm{p}} =\mathrm{0}.\mathrm{5}×\mathrm{4}=\mathrm{2}\:\mathrm{V} \\ $$$$\mathrm{V}_{\mathrm{p}} =\mathrm{V}_{\mathrm{s1}} \:=\mathrm{2}\:\mathrm{V} \\ $$$$\mathrm{i}_{\mathrm{s1}} =\frac{\mathrm{V}_{\mathrm{s1}} }{\mathrm{R}_{\mathrm{s1}} }\:=\:\frac{\mathrm{2}}{\mathrm{8}}=\mathrm{0}.\mathrm{25}\:\mathrm{A} \\ $$$$\mathrm{i}_{\mathrm{s1}} =\mathrm{i}_{\mathrm{4}\Omega} =\mathrm{0}.\mathrm{25}\:\mathrm{A}// \\ $$
Commented by DELETED last updated on 01/Aug/21

Leave a Reply

Your email address will not be published. Required fields are marked *