Question Number 149008 by Samimsultani last updated on 02/Aug/21
Commented by bramlexs22 last updated on 02/Aug/21
$$\sqrt{\mathrm{5}+\sqrt{\mathrm{24}}\:}\:=\:\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}\:=\:\sqrt{\mathrm{3}}\:+\sqrt{\mathrm{2}}\: \\ $$$$\sqrt{\mathrm{5}−\sqrt{\mathrm{24}}}\:=\:\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}} \\ $$$$\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)^{\mathrm{x}} −\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}\right)^{\mathrm{x}} \:=\:\mathrm{40}\sqrt{\mathrm{6}} \\ $$$$\mathrm{let}\:\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)^{\mathrm{x}} \:=\:\mathrm{u} \\ $$
Commented by Samimsultani last updated on 02/Aug/21
$$???? \\ $$
Commented by bramlexs22 last updated on 02/Aug/21
$$\mathrm{you}\:\mathrm{can}\:\mathrm{finish}\:\mathrm{it} \\ $$
Answered by Rasheed.Sindhi last updated on 02/Aug/21
$$\sqrt{\mathrm{5}+\sqrt{\mathrm{24}}}={t}\:,\frac{\mathrm{1}}{{t}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}+\sqrt{\mathrm{24}}}}×\frac{\sqrt{\mathrm{5}−\sqrt{\mathrm{24}}}}{\:\sqrt{\mathrm{5}−\sqrt{\mathrm{24}}}} \\ $$$$=\frac{\sqrt{\mathrm{5}−\sqrt{\mathrm{24}}}}{\:\sqrt{\mathrm{25}−\mathrm{24}}}=\sqrt{\mathrm{5}−\sqrt{\mathrm{24}}} \\ $$$${t}^{{x}} −\frac{\mathrm{1}}{{t}^{{x}} }=\mathrm{40}\sqrt{\mathrm{6}} \\ $$$${t}^{\mathrm{2}{x}} −\mathrm{40}\sqrt{\mathrm{6}}\:{t}^{{x}} −\mathrm{1}=\mathrm{0} \\ $$$${y}^{\mathrm{2}} −\mathrm{40}\sqrt{\mathrm{6}}\:{y}−\mathrm{1}=\mathrm{0} \\ $$$${y}=\frac{\mathrm{40}\sqrt{\mathrm{6}}\pm\sqrt{\mathrm{40}\left(\mathrm{6}\right)+\mathrm{4}}}{\mathrm{2}} \\ $$$${y}=\frac{\mathrm{40}\sqrt{\mathrm{6}}\pm\mathrm{2}\sqrt{\mathrm{61}}}{\mathrm{2}}=\mathrm{20}\sqrt{\mathrm{6}}\pm\sqrt{\mathrm{61}} \\ $$$${t}^{{x}} =\mathrm{20}\sqrt{\mathrm{6}}\pm\sqrt{\mathrm{61}} \\ $$$${x}\left(\mathrm{log}\:{t}\right)=\mathrm{log}\:\left(\mathrm{20}\sqrt{\mathrm{6}}\pm\sqrt{\mathrm{61}}\right) \\ $$$${x}=\frac{\mathrm{log}\:\left(\mathrm{20}\sqrt{\mathrm{6}}\pm\sqrt{\mathrm{61}}\right)}{\mathrm{log}\left(\sqrt{\mathrm{5}+\sqrt{\mathrm{24}}}\right)} \\ $$
Answered by mr W last updated on 02/Aug/21
$$\sqrt{\mathrm{5}+\sqrt{\mathrm{24}}}=\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{6}}}=\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}} \\ $$$$\sqrt{\mathrm{5}−\sqrt{\mathrm{24}}}=\sqrt{\mathrm{5}−\mathrm{2}\sqrt{\mathrm{6}}}=\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}} \\ $$$${t}=\left(\sqrt{\mathrm{5}+\sqrt{\mathrm{24}}}\right)^{{x}} =\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)^{{x}} >\mathrm{0} \\ $$$${t}−\frac{\mathrm{1}}{{t}}=\mathrm{40}\sqrt{\mathrm{6}} \\ $$$${t}^{\mathrm{2}} −\mathrm{40}\sqrt{\mathrm{6}}{t}−\mathrm{1}=\mathrm{0} \\ $$$${t}=\mathrm{20}\sqrt{\mathrm{6}}+\sqrt{\mathrm{20}^{\mathrm{2}} ×\mathrm{6}+\mathrm{1}}=\mathrm{20}\sqrt{\mathrm{6}}+\mathrm{49}=\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)^{\mathrm{4}} \\ $$$${x}=\frac{\mathrm{ln}\:\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)^{\mathrm{4}} }{\mathrm{ln}\:\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}\right)}=\mathrm{4} \\ $$