Question Number 149043 by Tawa11 last updated on 02/Aug/21
Commented by EDWIN88 last updated on 02/Aug/21
$${x}=\mathrm{2} \\ $$
Commented by Tawa11 last updated on 02/Aug/21
$$\mathrm{Workings}\:\mathrm{sir}. \\ $$
Commented by Tawa11 last updated on 02/Aug/21
$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x} \\ $$
Answered by EDWIN88 last updated on 02/Aug/21
$$\mathrm{2}\sqrt{{x}}\:\left({u}−{v}\right)=\mathrm{4}\sqrt{\mathrm{3}\:} \\ $$$${where}\:\begin{cases}{{u}=\sqrt{{x}}\:+\sqrt{{x}+\sqrt{\mathrm{3}}}}\\{{v}=\sqrt{{x}}−\sqrt{{x}−\sqrt{\mathrm{3}}}}\end{cases} \\ $$$$\Leftrightarrow\mathrm{2}\sqrt{{x}}\:\left(\sqrt{{x}+\sqrt{\mathrm{3}}}\:+\sqrt{{x}−\sqrt{\mathrm{3}}}\:\right)=\mathrm{4}\sqrt{\mathrm{3}} \\ $$$$\Leftrightarrow\sqrt{{x}^{\mathrm{2}} +{x}\sqrt{\mathrm{3}}}\:+\sqrt{{x}^{\mathrm{2}} −{x}\sqrt{\mathrm{3}}}\:=\:\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}\sqrt{{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} }\:=\:\mathrm{12} \\ $$$$\Rightarrow\sqrt{{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} }\:=\mathrm{6}−{x}^{\mathrm{2}} \\ $$$$\sqrt{{u}^{\mathrm{2}} −\mathrm{3}{u}}\:=\:\mathrm{6}−{u}\:;\:{u}={x}^{\mathrm{2}} \\ $$$${u}^{\mathrm{2}} −\mathrm{3}{u}=\mathrm{36}−\mathrm{12}{u}+{u}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{9}{u}=\mathrm{36}\Rightarrow{u}=\mathrm{4} \\ $$$${then}\:{x}\:=\:\mathrm{2}\:,\:{since}\:{x}=−\mathrm{2}\:{rejected} \\ $$
Commented by bramlexs22 last updated on 02/Aug/21
$$\mathrm{nice} \\ $$
Commented by Tawa11 last updated on 02/Aug/21
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$
Commented by Tawa11 last updated on 22/Aug/21
$$\mathrm{Sir}.\:\mathrm{I}\:\mathrm{could}\:\mathrm{not}\:\mathrm{get}\:\mathrm{the}\:\mathrm{first}\:\mathrm{part}\:\mathrm{since}. \\ $$$$\mathrm{That}\:\mathrm{is}:\:\:\:\:\:\:\mathrm{2}\sqrt{\mathrm{x}}\:\left(\mathrm{u}\:\:−\:\:\mathrm{v}\right)\:\:=\:\:\mathrm{4}\sqrt{\mathrm{3}} \\ $$$$\mathrm{But}\:\mathrm{I}\:\mathrm{understand}\:\mathrm{other}\:\mathrm{steps}\:\mathrm{very}\:\mathrm{well}. \\ $$