Menu Close

Question-149274




Question Number 149274 by BHOOPENDRA last updated on 04/Aug/21
Answered by Olaf_Thorendsen last updated on 05/Aug/21
(d^2 y/dx^2 )−3(dy/dx)+2y = e^x     (E)  Let y = e^x u, y′ = e^x (u′+u), y′′ = e^x (u′′+2u′+u)  (E) : u′′+2u′+u−3(u′+u)+2u = 1  (E) : u′′−u′ = 1  ⇒ u′ = −1, u = a−x  y = e^x u = (a−x)e^x
$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{3}\frac{{dy}}{{dx}}+\mathrm{2}{y}\:=\:{e}^{{x}} \:\:\:\:\left(\mathrm{E}\right) \\ $$$$\mathrm{Let}\:{y}\:=\:{e}^{{x}} {u},\:{y}'\:=\:{e}^{{x}} \left({u}'+{u}\right),\:{y}''\:=\:{e}^{{x}} \left({u}''+\mathrm{2}{u}'+{u}\right) \\ $$$$\left(\mathrm{E}\right)\::\:{u}''+\mathrm{2}{u}'+{u}−\mathrm{3}\left({u}'+{u}\right)+\mathrm{2}{u}\:=\:\mathrm{1} \\ $$$$\left(\mathrm{E}\right)\::\:{u}''−{u}'\:=\:\mathrm{1} \\ $$$$\Rightarrow\:{u}'\:=\:−\mathrm{1},\:{u}\:=\:{a}−{x} \\ $$$${y}\:=\:{e}^{{x}} {u}\:=\:\left({a}−{x}\right){e}^{{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *