Menu Close

Question-149372




Question Number 149372 by fotosy2k last updated on 05/Aug/21
Answered by john_santu last updated on 05/Aug/21
 lim_(x→0) ((sin (x+2sin x))/(sin x)) =  lim_(x→0) ((((sin (x+2sin x))/(x+2sin x)) . x+2sin x)/(((sin x)/x). x))  =lim_(x→0) ((x+2sin x)/x) = 1+2=3
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\mathrm{x}+\mathrm{2sin}\:\mathrm{x}\right)}{\mathrm{sin}\:\mathrm{x}}\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{sin}\:\left(\mathrm{x}+\mathrm{2sin}\:\mathrm{x}\right)}{\mathrm{x}+\mathrm{2sin}\:\mathrm{x}}\:.\:\mathrm{x}+\mathrm{2sin}\:\mathrm{x}}{\frac{\mathrm{sin}\:\mathrm{x}}{\mathrm{x}}.\:\mathrm{x}} \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}+\mathrm{2sin}\:\mathrm{x}}{\mathrm{x}}\:=\:\mathrm{1}+\mathrm{2}=\mathrm{3} \\ $$
Commented by fotosy2k last updated on 05/Aug/21
thank you
$${thank}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *