Menu Close

Question-149457




Question Number 149457 by liberty last updated on 05/Aug/21
Answered by EDWIN88 last updated on 05/Aug/21
 f(x)=sin^4 x−sin xcos x+cos^4 x  f(x)=1−(1/2)sin 2x−(1/2)sin^2 2x  we define sin 2x=t  f(x)=g(t)=1−(1/2)t−(1/2)t^2   g(t)=(9/8)−(1/2)(t+(1/2))^2   so we have min_(−1≤t≤1)  g(t)=g(1)=0  and max_(−1≤t≤1)  g(t)=g(−(1/2))=(9/8)  Hence 0≤f(x)≤(9/8)
$$\:{f}\left({x}\right)=\mathrm{sin}\:^{\mathrm{4}} {x}−\mathrm{sin}\:{x}\mathrm{cos}\:{x}+\mathrm{cos}\:^{\mathrm{4}} {x} \\ $$$${f}\left({x}\right)=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:^{\mathrm{2}} \mathrm{2}{x} \\ $$$${we}\:{define}\:\mathrm{sin}\:\mathrm{2}{x}={t} \\ $$$${f}\left({x}\right)={g}\left({t}\right)=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{t}−\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{2}} \\ $$$${g}\left({t}\right)=\frac{\mathrm{9}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$${so}\:{we}\:{have}\:\underset{−\mathrm{1}\leqslant{t}\leqslant\mathrm{1}} {\underbrace{{min}}}\:{g}\left({t}\right)={g}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$${and}\:\underset{−\mathrm{1}\leqslant{t}\leqslant\mathrm{1}} {\underbrace{{max}}}\:{g}\left({t}\right)={g}\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{9}}{\mathrm{8}} \\ $$$${Hence}\:\mathrm{0}\leqslant{f}\left({x}\right)\leqslant\frac{\mathrm{9}}{\mathrm{8}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *