Menu Close

Question-149467




Question Number 149467 by fotosy2k last updated on 05/Aug/21
Answered by mindispower last updated on 05/Aug/21
ln(a_n )=nln(1+(1/n))  ln(1+x)≤x  ⇒0≤ln(a_n )≤n.(1/n)⇒0≤ln(a_n )≤1  ⇒1≤a_n ≤e
$${ln}\left({a}_{{n}} \right)={nln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right) \\ $$$${ln}\left(\mathrm{1}+{x}\right)\leqslant{x} \\ $$$$\Rightarrow\mathrm{0}\leqslant{ln}\left({a}_{{n}} \right)\leqslant{n}.\frac{\mathrm{1}}{{n}}\Rightarrow\mathrm{0}\leqslant{ln}\left({a}_{{n}} \right)\leqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}\leqslant{a}_{{n}} \leqslant{e} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *