Menu Close

Question-149773




Question Number 149773 by Samimsultani last updated on 07/Aug/21
Answered by puissant last updated on 07/Aug/21
I=∫_0 ^∞ ((cos(ax))/(x^2 +b^2 ))dx  =(1/2)∫_(−∞) ^(+∞) ((cos(ax))/(x^2 +b^2 ))dx  car cos(x) est paire  =(1/2)Re(∫_(−∞) ^(+∞) (e^(aix) /(x^2 +b^2 ))dx)  or ψ=∫_(−∞) ^(+∞) (e^(iax) /(x^2 +b^2 ))dx = 2iπ Res(ψ,ib)  (theoreme du residu.)..  =2iπ(e^(ia(ib)) /(2ib))  =(π/b)e^(−ab)   d′ou   ∵     I=(π/(2b))e^(−ab) ....                  ....Le puissant....
I=0cos(ax)x2+b2dx=12+cos(ax)x2+b2dxcarcos(x)estpaire=12Re(+eaixx2+b2dx)orψ=+eiaxx2+b2dx=2iπRes(ψ,ib)(theoremeduresidu.)..=2iπeia(ib)2ib=πbeabdouI=π2beab..Lepuissant.

Leave a Reply

Your email address will not be published. Required fields are marked *