Menu Close

Question-149865




Question Number 149865 by Naser last updated on 07/Aug/21
Answered by mr W last updated on 07/Aug/21
Commented by mr W last updated on 07/Aug/21
A_(total) =b×b=b^2   y_(total) =(b/2)  A_1 =(b/2)×(b/2)=(b^2 /4)  A_3 =(b/3)×b=(b^2 /3)  A_2 =A_(total) −A_1 −A_3 =b^2 −(b^2 /4)−(b^2 /3)=((5b^2 )/(12))  y_1 =(1/3)×(b/2)=(b/6)  y_2 =?  y_3 =((3b)/4)  A_1 y_1 +A_2 y_2 +A_3 y_3 =A_(total) y_(total)   (b^2 /4)×(b/6)+((5b^2 )/(12))×y_2 +(b^2 /3)×((3b)/4)=b^2 ×(b/2)  ⇒y_2 =(b/2)  the y−coordinate of centroid  of shaded area is (b/2).
$${A}_{{total}} ={b}×{b}={b}^{\mathrm{2}} \\ $$$${y}_{{total}} =\frac{{b}}{\mathrm{2}} \\ $$$${A}_{\mathrm{1}} =\frac{{b}}{\mathrm{2}}×\frac{{b}}{\mathrm{2}}=\frac{{b}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${A}_{\mathrm{3}} =\frac{{b}}{\mathrm{3}}×{b}=\frac{{b}^{\mathrm{2}} }{\mathrm{3}} \\ $$$${A}_{\mathrm{2}} ={A}_{{total}} −{A}_{\mathrm{1}} −{A}_{\mathrm{3}} ={b}^{\mathrm{2}} −\frac{{b}^{\mathrm{2}} }{\mathrm{4}}−\frac{{b}^{\mathrm{2}} }{\mathrm{3}}=\frac{\mathrm{5}{b}^{\mathrm{2}} }{\mathrm{12}} \\ $$$${y}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{3}}×\frac{{b}}{\mathrm{2}}=\frac{{b}}{\mathrm{6}} \\ $$$${y}_{\mathrm{2}} =? \\ $$$${y}_{\mathrm{3}} =\frac{\mathrm{3}{b}}{\mathrm{4}} \\ $$$${A}_{\mathrm{1}} {y}_{\mathrm{1}} +{A}_{\mathrm{2}} {y}_{\mathrm{2}} +{A}_{\mathrm{3}} {y}_{\mathrm{3}} ={A}_{{total}} {y}_{{total}} \\ $$$$\frac{{b}^{\mathrm{2}} }{\mathrm{4}}×\frac{{b}}{\mathrm{6}}+\frac{\mathrm{5}{b}^{\mathrm{2}} }{\mathrm{12}}×{y}_{\mathrm{2}} +\frac{{b}^{\mathrm{2}} }{\mathrm{3}}×\frac{\mathrm{3}{b}}{\mathrm{4}}={b}^{\mathrm{2}} ×\frac{{b}}{\mathrm{2}} \\ $$$$\Rightarrow{y}_{\mathrm{2}} =\frac{{b}}{\mathrm{2}} \\ $$$${the}\:{y}−{coordinate}\:{of}\:{centroid} \\ $$$${of}\:{shaded}\:{area}\:{is}\:\frac{{b}}{\mathrm{2}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *