Question Number 14991 by tawa tawa last updated on 06/Jun/17
Answered by ajfour last updated on 06/Jun/17
$$\:\:\:\:\:=\frac{\mathrm{tan}\:\theta}{\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{tan}\:\theta}\right)}+\frac{\mathrm{1}}{\mathrm{tan}\:\theta\left(\mathrm{1}−\mathrm{tan}\:\theta\right)} \\ $$$$\:\:\:\:=\frac{\mathrm{tan}\:^{\mathrm{2}} \theta}{\mathrm{tan}\:\theta−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{tan}\:\theta\left(\mathrm{tan}\:\theta−\mathrm{1}\right)} \\ $$$$\:\:\:\:=\frac{\mathrm{tan}\:^{\mathrm{3}} \theta−\mathrm{1}}{\mathrm{tan}\:\theta\left(\mathrm{tan}\:\theta−\mathrm{1}\right)}\: \\ $$$$\:\:\:\:=\frac{\mathrm{tan}\:^{\mathrm{2}} \theta+\mathrm{1}+\mathrm{tan}\:\theta}{\mathrm{tan}\:\theta}\:\:\:\:\:\:\left({if}\:\mathrm{tan}\:\theta\neq\mathrm{1}\right) \\ $$$$\:\:\:\:=\frac{\mathrm{sec}\:^{\mathrm{2}} \theta+\mathrm{tan}\:\theta}{\mathrm{tan}\:\theta}\:=\frac{\mathrm{sec}\:^{\mathrm{2}} \theta}{\mathrm{tan}\:\theta}+\mathrm{1} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\left(\mathrm{cos}\:^{\mathrm{2}} \theta\right)\left(\frac{\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta}\right)}+\mathrm{1} \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{sin}\:\theta\mathrm{cos}\:\theta}+\mathrm{1} \\ $$$$\:\:\:\:=\mathrm{cosec}\:\theta\mathrm{sec}\:\theta+\mathrm{1}\:. \\ $$
Commented by tawa tawa last updated on 06/Jun/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by RasheedSoomro last updated on 06/Jun/17
$$\frac{\mathrm{tan}\theta}{\mathrm{1}−\mathrm{cot}\theta}+\frac{\mathrm{cot}\theta}{\mathrm{1}−\mathrm{tan}\theta}=\mathrm{1}+\mathrm{sec}\theta\mathrm{csc}\theta \\ $$$$\mathrm{LHS}:\frac{\frac{\mathrm{sin}\theta}{\mathrm{cos}\theta}}{\mathrm{1}−\frac{\mathrm{cos}\theta}{\mathrm{sin}\theta}}+\frac{\frac{\mathrm{cos}\theta}{\mathrm{sin}\theta}}{\mathrm{1}−\frac{\mathrm{sin}\theta}{\mathrm{cos}\theta}} \\ $$$$\:\:\:\:=\frac{\frac{\mathrm{sin}\theta}{\mathrm{cos}\theta}}{\frac{\mathrm{sin}\theta−\mathrm{cos}\theta}{\mathrm{sin}\theta}}+\frac{\frac{\mathrm{cos}\theta}{\mathrm{sin}\theta}}{\frac{\mathrm{cos}\theta−\mathrm{sin}\theta}{\mathrm{cos}\theta}} \\ $$$$\:\:\:\:\:\:\:=\:\:\frac{\mathrm{sin}\theta}{\mathrm{cos}\theta}×\frac{\mathrm{sin}\theta}{\mathrm{sin}\theta−\mathrm{cos}\theta}+\frac{\mathrm{cos}\theta}{\mathrm{sin}\theta}×\frac{\mathrm{cos}\theta}{\mathrm{cos}\theta−\mathrm{sin}\theta} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{sin}^{\mathrm{2}} \theta}{\mathrm{cos}\theta\left(\mathrm{sin}\theta−\mathrm{cos}\theta\right)}+\frac{\mathrm{cos}^{\mathrm{2}} \theta}{\mathrm{sin}\theta\left(\mathrm{cos}\theta−\mathrm{sin}\theta\right)} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{sin}\theta−\mathrm{cos}\theta}\left(\frac{\mathrm{sin}^{\mathrm{2}} \theta}{\mathrm{cos}\theta}−\frac{\mathrm{cos}^{\mathrm{2}} \theta}{\mathrm{sin}\theta}\right) \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{sin}\theta−\mathrm{cos}\theta}\left(\frac{\mathrm{sin}^{\mathrm{3}} \theta−\mathrm{cos}^{\mathrm{3}} \theta}{\mathrm{sin}\theta\mathrm{cos}\theta}\right) \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{sin}\theta−\mathrm{cos}\theta}×\frac{\left(\mathrm{sin}\theta−\mathrm{cos}\theta\right)\left(\mathrm{sin}^{\mathrm{2}} \theta+\mathrm{sin}\theta\mathrm{cos}\theta+\mathrm{cos}^{\mathrm{2}} \theta\right)}{\mathrm{sin}\theta\mathrm{cos}\theta} \\ $$$$\:\:\:\:\:\:=\frac{\mathrm{sin}^{\mathrm{2}} \theta+\mathrm{sin}\theta\mathrm{cos}\theta+\mathrm{cos}^{\mathrm{2}} \theta}{\mathrm{sin}\theta\mathrm{cos}\theta} \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}+\mathrm{sin}\theta\mathrm{cos}\theta}{\mathrm{sin}\theta\mathrm{cos}\theta} \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{sin}\theta\mathrm{cos}\theta}+\frac{\mathrm{sin}\theta\mathrm{cos}\theta}{\mathrm{sin}\theta\mathrm{cos}\theta} \\ $$$$\:\:\:\:\:=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{cos}\theta}×\frac{\mathrm{1}}{\mathrm{sin}\theta} \\ $$$$\:\:\:\:\:=\mathrm{1}+\mathrm{sec}\theta\:\mathrm{csc}\theta=\mathrm{RHS} \\ $$$$ \\ $$
Commented by tawa tawa last updated on 06/Jun/17
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$