Question Number 149932 by mathdanisur last updated on 08/Aug/21
Answered by mr W last updated on 08/Aug/21
$${say}\:{AB}={CD}=\mathrm{1} \\ $$$$\frac{{BD}}{\mathrm{sin}\:\mathrm{5}{x}}=\frac{{BC}}{\mathrm{sin}\:\mathrm{9}{x}}=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{4}{x}} \\ $$$$\Rightarrow{BD}=\frac{\mathrm{sin}\:\mathrm{5}{x}}{\mathrm{sin}\:\mathrm{4}{x}} \\ $$$$\Rightarrow{BC}=\frac{\mathrm{sin}\:\mathrm{9}{x}}{\mathrm{sin}\:\mathrm{4}{x}} \\ $$$$\frac{{AD}}{\mathrm{sin}\:\mathrm{25}{x}}=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{9}{x}}=\frac{{BD}}{\mathrm{sin}\:\mathrm{16}{x}} \\ $$$$\Rightarrow{AD}=\frac{\mathrm{sin}\:\mathrm{25}}{\mathrm{sin}\:\mathrm{9}{x}} \\ $$$$\Rightarrow{BD}=\frac{\mathrm{sin}\:\mathrm{16}{x}}{\mathrm{sin}\:\mathrm{9}{x}} \\ $$$$\frac{\mathrm{sin}\:\mathrm{16}{x}}{\mathrm{sin}\:\mathrm{9}{x}}=\frac{\mathrm{sin}\:\mathrm{5}{x}}{\mathrm{sin}\:\mathrm{4}{x}}\:\:\:…\left({i}\right) \\ $$$$\frac{{BC}}{\mathrm{sin}\:\mathrm{16}{x}}=\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{5}{x}} \\ $$$$\Rightarrow{BC}=\frac{\mathrm{sin}\:\mathrm{16}{x}}{\mathrm{sin}\:\mathrm{5}{x}} \\ $$$$\frac{\mathrm{sin}\:\mathrm{16}{x}}{\mathrm{sin}\:\mathrm{5}{x}}=\frac{\mathrm{sin}\:\mathrm{9}{x}}{\mathrm{sin}\:\mathrm{4}{x}}\:\:\:…\left({ii}\right)\equiv\left({i}\right) \\ $$$$\Rightarrow{x}\approx\mathrm{6}° \\ $$
Commented by mathdanisur last updated on 08/Aug/21
$$\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{Thank}\:\mathrm{You} \\ $$
Answered by Rasheed.Sindhi last updated on 08/Aug/21
$$\bigtriangleup{ABC}:\:\angle{ABD}=\pi−\left(\mathrm{16}{x}+\mathrm{5}{x}+\mathrm{4}{x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\pi−\mathrm{25}{x} \\ $$$$\bigtriangleup{ABD}:\:\angle{ADB}=\pi−\mathrm{16}{x}−\left(\pi−\mathrm{25}{x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{9}{x} \\ $$$$\bigtriangleup{BDC}:\:\angle{BDC}=\pi−\left(\mathrm{4}{x}+\mathrm{5}{x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\pi−\mathrm{9}{x} \\ $$$$\angle{ADB}+\angle{CDB}=\pi \\ $$$$\mathrm{9}{x}+\pi−\mathrm{9}{x}=\pi \\ $$$$\:\:\:\:\:\:\:\:\pi=\pi\:\:\:{free}\:{of}\:{x} \\ $$$${Any}\:{value}\:{of}\:{x}\:{for}\:{which}\:{each}\:{of} \\ $$$${all}\:{angles}\:{fall}\:{between}\:\mathrm{0}\:\&\:\pi. \\ $$
Commented by mathdanisur last updated on 08/Aug/21
$$\mathrm{Thank}\:\mathrm{you}\:\boldsymbol{\mathrm{S}}\mathrm{er} \\ $$
Commented by prakash jain last updated on 08/Aug/21
$${AB}={CD}\:\mathrm{will}\:\mathrm{not}\:\mathrm{satisfy}\:\mathrm{for}\:\mathrm{all}\:{x}. \\ $$
Commented by Rasheed.Sindhi last updated on 09/Aug/21
$$\mathcal{T}{han}\mathcal{X}\:\:{Sir}\:{prakash}\:{jain},\:{Actually}\:{I}\:{didn}'{t} \\ $$$${see}\:{it}\:{and}\:{therefore}\:{didn}'{t}\:{consider} \\ $$$${it}. \\ $$