Question Number 15006 by ajfour last updated on 06/Jun/17
Commented by RasheedSoomro last updated on 07/Jun/17
$$\mathrm{Which}\:\boldsymbol{\mathrm{app}}\:\:\mathrm{do}\:\mathrm{you}\:\mathrm{use}\:\mathrm{to}\:\mathrm{draw}\:\mathrm{so} \\ $$$$\mathrm{nice}\:\mathrm{figures}\:?! \\ $$
Commented by ajfour last updated on 06/Jun/17
$${solution}\:\:{to}\:{Q}.\mathrm{14940}\:\:\: \\ $$$${sides}\:{of}\:\bigtriangleup{AOB}\:{divided}\:{in}\:\mathrm{3}\:{parts} \\ $$$$\left({special}\:{case}\right): \\ $$$$\left[{image}\:{got}\:{posted}\:{as}\:{question}\:{several}\right. \\ $$$$\left.{times};\:{i}\:{too}\:{need}\:{to}\:{complain}\:{this}\:{issue}..\right] \\ $$
Commented by ajfour last updated on 07/Jun/17
$${Lekh}\:{diagram} \\ $$
Commented by Tinkutara last updated on 07/Jun/17
$$\mathrm{Please}\:\mathrm{tell}\:\mathrm{me}\:\mathrm{also}\:\mathrm{Sir}!\:\mathrm{Which}\:\mathrm{app}\:\mathrm{is} \\ $$$$\mathrm{this}? \\ $$
Commented by RasheedSoomro last updated on 07/Jun/17
$$\mathrm{TO}\:\:\mathrm{WHOM}\:\:\:\:\mathrm{WHO}\:\:\:\:\mathrm{INTREST}\:\:\:\:\mathrm{IN}\:\:\:\mathrm{GEOMETRY} \\ $$$$\mathrm{A}\:\mathrm{free}\:\mathrm{geometry}\:\mathrm{book}\:\mathrm{in}\:\mathrm{PDF}. \\ $$$$\mathrm{The}\:\mathrm{book}\:\mathrm{is}\:\mathrm{treasure}\:\mathrm{of}\:\mathrm{theorems}. \\ $$$$\mathrm{For}\:\mathrm{the}\:\mathrm{book}\:\mathrm{and}\:\mathrm{about}\:\mathrm{the}\:\mathrm{book} \\ $$$$\mathrm{see}\:\mathrm{the}\:\mathrm{image}\:\mathrm{below} \\ $$
Commented by RasheedSoomro last updated on 07/Jun/17
Commented by Tinkutara last updated on 07/Jun/17
$$\mathrm{I}\:\mathrm{found}\:\mathrm{PDF}\:\mathrm{of}\:\mathrm{this}\:\mathrm{book}\:\mathrm{on}\:\mathrm{net}\:\mathrm{but} \\ $$$$\mathrm{this}\:\mathrm{book}\:\mathrm{does}\:\mathrm{not}\:\mathrm{contain}\:\mathrm{any}\:\mathrm{questions} \\ $$$$\left(\mathrm{problems}\right).\:\mathrm{It}\:\mathrm{only}\:\mathrm{contains}\:\mathrm{figures}. \\ $$$$\mathrm{How}\:\mathrm{to}\:\mathrm{find}\:\mathrm{its}\:\mathrm{question}? \\ $$
Commented by RasheedSoomro last updated on 07/Jun/17
$$\mathrm{Statements}\:\mathrm{of}\:\mathrm{theorems}\:\left(\mathrm{data}\:\mathrm{and}\:\mathrm{what}\:\mathrm{to}\right. \\ $$$$\left.\mathrm{prove}\:\mathrm{both}\right)\:\mathrm{can}\:\mathrm{be}\:\mathrm{understand}\:\mathrm{from}\:\:\mathrm{figures}! \\ $$
Answered by ajfour last updated on 06/Jun/17
$${eqn}.\:{of}\:{UT}: \\ $$$$\:\frac{{x}_{{a}} }{{a}}−\frac{{y}_{{b}} }{{b}}=\mathrm{1}\:\:\:\:\:\left({triangular}\:{coordinates}\right) \\ $$$${eqn}.\:{of}\:{ST}: \\ $$$$\:\frac{{x}_{{a}} }{\mathrm{2}{a}}+\frac{{y}}{{b}}=\mathrm{1} \\ $$$${solving}\:{them}\:{to}\:{get}\:\:\boldsymbol{{T}}\equiv\left(\frac{\mathrm{4}{a}}{\mathrm{3}},\:\frac{{b}}{\mathrm{3}}\right) \\ $$$$\:{eqn}.\:{of}\:{RS}: \\ $$$$\:\frac{{x}_{{a}} }{{a}}+\frac{{y}_{{b}} }{\mathrm{2}{b}}=\mathrm{1} \\ $$$${solving}\:{with}\:{that}\:{for}\:{ST}\:{to}\:{get} \\ $$$$\:\:\:\:\boldsymbol{{S}}\equiv\left(\frac{\mathrm{2}{a}}{\mathrm{3}},\:\frac{\mathrm{2}{b}}{\mathrm{3}}\right) \\ $$$${Area}_{\bigtriangleup{red}} =\frac{\mathrm{9}{ap}}{\mathrm{2}}−\mathrm{3}{ap}=\frac{\mathrm{3}{ap}}{\mathrm{2}} \\ $$$${Area}_{\bigtriangleup{SaT}} =\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{a}−{a}\right)\left({y}_{{S}} −{y}_{{T}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left({a}\right)\left(\frac{\mathrm{2}{p}}{\mathrm{3}}−\frac{{p}}{\mathrm{3}}\right)=\frac{\boldsymbol{{ap}}}{\mathrm{6}} \\ $$$${Area}_{{PQRSTU}} ={Area}_{\bigtriangleup{red}} −\mathrm{3}{Area}_{{SaT}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{3}{ap}}{\mathrm{2}}−\mathrm{3}\left(\frac{{ap}}{\mathrm{6}}\right)={ap} \\ $$$${total}\:{area}\:{of}\:\bigtriangleup{AOB}=\frac{\mathrm{9}{ap}}{\mathrm{2}} \\ $$$${so},\:\frac{{Area}_{{PQRSTU}} }{{Area}_{\bigtriangleup{AOB}} }\:=\frac{\boldsymbol{{ap}}}{\left(\mathrm{9}\boldsymbol{{ap}}/\mathrm{2}\right)}\:=\:\frac{\mathrm{2}}{\mathrm{9}}\:. \\ $$
Commented by mrW1 last updated on 06/Jun/17
$$\mathrm{very}\:\mathrm{nice}\:\mathrm{sir}!\:\mathrm{just}\:\mathrm{go}\:\mathrm{on}. \\ $$
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 06/Jun/17
$${nice}\:{solution}\:{mr}\:{Ajfour}!\:{thanks}. \\ $$$${i}\:{love}\:{this}. \\ $$
Commented by ajfour last updated on 06/Jun/17
$${thanks}\:{sir},\:{symmetry}\:{is}\:{a} \\ $$$${beautiful}\:{property}\:.. \\ $$
Commented by mrW1 last updated on 07/Jun/17
$$\mathrm{mr}\:\mathrm{ajfour}: \\ $$$$\mathrm{you}\:\mathrm{only}\:\mathrm{need}\:\mathrm{to}\:\mathrm{replace}\:\mathrm{2a}\:\mathrm{with}\:\left(\mathrm{n}−\mathrm{1}\right)\mathrm{a} \\ $$$$\mathrm{and}\:\mathrm{2b}\:\mathrm{with}\:\left(\mathrm{n}−\mathrm{1}\right)\mathrm{b},\:\mathrm{then}\:\mathrm{you}\:\mathrm{can} \\ $$$$\mathrm{get}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{case}\:\mathrm{n}. \\ $$$$\mathrm{To}\:\mathrm{make}\:\mathrm{the}\:\mathrm{thing}\:\mathrm{a}\:\mathrm{little}\:\mathrm{bit}\:\mathrm{easier}, \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{put}\:\mathrm{point}\:\mathrm{A}\:\mathrm{on}\:\mathrm{the}\:\mathrm{y}−\mathrm{axis}, \\ $$$$\mathrm{since}\:\mathrm{this}\:\mathrm{will}\:\mathrm{not}\:\mathrm{change}\:\mathrm{the}\:\mathrm{areas} \\ $$$$\mathrm{as}\:\mathrm{we}\:\mathrm{know}. \\ $$
Commented by ajfour last updated on 07/Jun/17
$${All}\:{right}\:\mathcal{S}{ir},\:{shall}\:{attempt}.. \\ $$
Commented by mrW1 last updated on 07/Jun/17
$$\mathbb{G}\mathrm{reat}\:\mathrm{job}\:\mathrm{sir}!\:\mathbb{F}\mathrm{antastic}! \\ $$
Commented by ajfour last updated on 07/Jun/17
$${Got}\:{the}\:{answer}\:\mathcal{S}{ir}, \\ $$$$\:\:\:{for}\:{n}\geqslant\mathrm{2}\:{and}\:{n}\in\mathbb{N} \\ $$$$\:\frac{{Area}_{{PQRST}} }{{Area}_{\bigtriangleup{AOB}} }\:=\:\frac{\mathrm{2}\left(\boldsymbol{{n}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{{n}}+\mathrm{3}\right)^{\mathrm{2}} }{\boldsymbol{{n}}^{\mathrm{3}} \left(\mathrm{2}\boldsymbol{{n}}−\mathrm{3}\right)}\:. \\ $$
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 08/Jun/17
$${mr}\:{Ajfour}!\:{please}\:{post}\:{your}\:{solution}\:{her}. \\ $$