Menu Close

Question-150097




Question Number 150097 by mathdanisur last updated on 09/Aug/21
Answered by Kamel last updated on 09/Aug/21
u_n =Π_(p=0) ^m γ_(n+p) =(γ+(1/(2n)))^(m+1) +o((1/n))=γ^(m+1) +(m+1)(γ^m /(2n))+o((1/n))  lim_(n→+∞) (γ_n γ_(n+1) ...γ_(n+m) −γ^(m+1) )=(((m+1)γ^m )/2)
$${u}_{{n}} =\underset{{p}=\mathrm{0}} {\overset{{m}} {\prod}}\gamma_{{n}+{p}} =\left(\gamma+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)^{{m}+\mathrm{1}} +{o}\left(\frac{\mathrm{1}}{{n}}\right)=\gamma^{{m}+\mathrm{1}} +\left({m}+\mathrm{1}\right)\frac{\gamma^{{m}} }{\mathrm{2}{n}}+{o}\left(\frac{\mathrm{1}}{{n}}\right) \\ $$$$\underset{{n}\rightarrow+\infty} {{lim}}\left(\gamma_{{n}} \gamma_{{n}+\mathrm{1}} …\gamma_{{n}+{m}} −\gamma^{{m}+\mathrm{1}} \right)=\frac{\left({m}+\mathrm{1}\right)\gamma^{{m}} }{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *