Menu Close

Question-150305




Question Number 150305 by Tawa11 last updated on 10/Aug/21
Commented by Tawa11 last updated on 10/Aug/21
Find    (R/r)
$$\mathrm{Find}\:\:\:\:\frac{\mathrm{R}}{\mathrm{r}} \\ $$
Answered by nimnim last updated on 11/Aug/21
With midpoint M  ar(△MBC)=2×ar(△MDC)  AB=2a (say)  BM=CM=(√((2a)^2 +a^2 ))=a(√5)  In △MBC, s=((a(√5)+a(√5)+2a)/2)=((√5)+1)a  R=((ar(△MBC))/(((√5)+1)a))  In △MDC, s=((a(√5)+a+2a)/2)=((((√5)+3)a)/2)  r=((ar(△MDC))/(((√5)+3)a/2))=((2×ar(△MDC))/( ((√5)+3)a))  ∴ (R/r)=((ar(△MBC))/(((√5)+1)a))×((((√5)+3)a)/(2×ar(△MDC)))            =(((√5)+3)/( (√5)+1))★    or   =(((√5)+3)/( (√5)+1))×(((√5)−1)/( (√5)−1))             =((5+3(√5)−(√5)−3)/4)             =((1+(√5))/2)= ϕ (golden ratio)
$${With}\:{midpoint}\:{M} \\ $$$${ar}\left(\bigtriangleup{MBC}\right)=\mathrm{2}×{ar}\left(\bigtriangleup{MDC}\right) \\ $$$${AB}=\mathrm{2}{a}\:\left({say}\right) \\ $$$${BM}={CM}=\sqrt{\left(\mathrm{2}{a}\right)^{\mathrm{2}} +{a}^{\mathrm{2}} }={a}\sqrt{\mathrm{5}} \\ $$$${In}\:\bigtriangleup{MBC},\:{s}=\frac{{a}\sqrt{\mathrm{5}}+{a}\sqrt{\mathrm{5}}+\mathrm{2}{a}}{\mathrm{2}}=\left(\sqrt{\mathrm{5}}+\mathrm{1}\right){a} \\ $$$${R}=\frac{{ar}\left(\bigtriangleup{MBC}\right)}{\left(\sqrt{\mathrm{5}}+\mathrm{1}\right){a}} \\ $$$${In}\:\bigtriangleup{MDC},\:{s}=\frac{{a}\sqrt{\mathrm{5}}+{a}+\mathrm{2}{a}}{\mathrm{2}}=\frac{\left(\sqrt{\mathrm{5}}+\mathrm{3}\right){a}}{\mathrm{2}} \\ $$$${r}=\frac{{ar}\left(\bigtriangleup{MDC}\right)}{\left(\sqrt{\mathrm{5}}+\mathrm{3}\right){a}/\mathrm{2}}=\frac{\mathrm{2}×{ar}\left(\bigtriangleup{MDC}\right)}{\:\left(\sqrt{\mathrm{5}}+\mathrm{3}\right){a}} \\ $$$$\therefore\:\frac{{R}}{{r}}=\frac{{ar}\left(\bigtriangleup{MBC}\right)}{\left(\sqrt{\mathrm{5}}+\mathrm{1}\right){a}}×\frac{\left(\sqrt{\mathrm{5}}+\mathrm{3}\right){a}}{\mathrm{2}×{ar}\left(\bigtriangleup{MDC}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{5}}+\mathrm{3}}{\:\sqrt{\mathrm{5}}+\mathrm{1}}\bigstar \\ $$$$\:\:{or}\:\:\:=\frac{\sqrt{\mathrm{5}}+\mathrm{3}}{\:\sqrt{\mathrm{5}}+\mathrm{1}}×\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\:\sqrt{\mathrm{5}}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{5}+\mathrm{3}\sqrt{\mathrm{5}}−\sqrt{\mathrm{5}}−\mathrm{3}}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}=\:\varphi\:\left({golden}\:{ratio}\right) \\ $$
Commented by Tawa11 last updated on 11/Aug/21
Thanks sir. I appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *