Menu Close

Question-150413




Question Number 150413 by saly last updated on 12/Aug/21
Commented by MJS_new last updated on 12/Aug/21
in this case we must take the long way home...    (1) arctan r =−(i/2)(ln (1+ir) −ln (1−ir))  ⇒  ∫arctan sin x dx=  =−(i/2)(∫ln (1+i sin x) dx−∫ln (1−i sin x) dx)    (2) sin α =((e^(iα) −e^(−iα) )/(2i))  ⇒  [similar for the 2^(nd)  integral]  ∫ln (1+i sin x) dx=  =∫ln (1+(e^(ix) /2)−(1/(2e^(ix) ))) dx    (3) t=ix ⇔ x=−it → dx=−idt  ⇒  ∫ln (1+(e^(ix) /2)−(1/(2e^(ix) ))) dx=  =iln 2∫dt −i∫ln (2+e^t −e^(−t) ) dt    (4) by parts  ⇒  ∫ln (2+e^t −e^(−t) ) dt=  =tln (2+e^t −e^(−t) ) −∫((t(e^(2t) +1))/(e^(2t) −2e^t −1))dt    (5) u=e^t  ⇔ t=ln u → dt=(du/u)  ⇒  ∫((t(e^(2t) +1))/(e^(2t) −2e^t −1))dt=  =∫(((u^2 +1)ln u)/(u(u^2 −2u−1)))du=  =2∫((uln u)/(u^2 −2u−1))du−2∫((ln u)/(u^2 −2u−1))du−∫((ln u)/u)du    and I hope you can do these yourself
inthiscasewemusttakethelongwayhome(1)arctanr=i2(ln(1+ir)ln(1ir))arctansinxdx==i2(ln(1+isinx)dxln(1isinx)dx)(2)sinα=eiαeiα2i[similarforthe2ndintegral]ln(1+isinx)dx==ln(1+eix212eix)dx(3)t=ixx=itdx=idtln(1+eix212eix)dx==iln2dtiln(2+etet)dt(4)bypartsln(2+etet)dt==tln(2+etet)t(e2t+1)e2t2et1dt(5)u=ett=lnudt=duut(e2t+1)e2t2et1dt==(u2+1)lnuu(u22u1)du==2ulnuu22u1du2lnuu22u1dulnuuduandIhopeyoucandotheseyourself
Commented by saly last updated on 12/Aug/21
  Thank sir
Thanksir
Commented by MJS_new last updated on 12/Aug/21
you′re welcome.
yourewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *