Menu Close

Question-150560




Question Number 150560 by DELETED last updated on 13/Aug/21
Answered by DELETED last updated on 13/Aug/21
 lim_(x→3)  (((x^2 −7x+12)sin (x−3))/((x^2 −x−6)^2 ))         lim_(x→3)  (( (x−4)(x−3)sin (x−3))/({(x+2)(x−3)}^2 ))  lim_(x→3) (( (x−4))/((x+2)^2 (x−3)))×lim_((x−3)→0)  ((sin (x−3))/((x−3)))  (((3−4))/((3+2)^2 (3−4))) × 1=(( (−1)×1)/(5^2 (−1)))=((−1)/(−25))=(1/(25))
limx3(x27x+12)sin(x3)(x2x6)2limx3(x4)(x3)sin(x3){(x+2)(x3)}2limx3(x4)(x+2)2(x3)×lim(x3)0sin(x3)(x3)(34)(3+2)2(34)×1=(1)×152(1)=125=125
Commented by tabata last updated on 13/Aug/21
i thing =−(1/(25))
ithing=125
Answered by DELETED last updated on 13/Aug/21
2). lim_(x→−2)  ((tan (6x+12))/((4x+8)))= lim_((x+2)→0) ((tan 6(x+2))/(4(x+2)))  (6/4) ×lim_((x+2)→0) ((tan (x+2))/((x+2)))=(6/4)×1=(3/2)
2).limx2tan(6x+12)(4x+8)=lim(x+2)0tan6(x+2)4(x+2)64×lim(x+2)0tan(x+2)(x+2)=64×1=32
Answered by DELETED last updated on 13/Aug/21
3). lim_((x−(π/8) )→0)   ((tan (6x−((3π)/4)))/(tan (2x−(π/4))))         = lim_((x−(π/8)) → 0)   ((tan 6(x−(π/8)))/(tan 2(x−(π/8))))          = (6/2)×lim_((x−(π/8)) →0)   ((tan (x−(π/8)))/(tan (x−(π/8))))        =(6/2) ×1=3 //
3).lim(xπ8)0tan(6x3π4)tan(2xπ4)=lim(xπ8)0tan6(xπ8)tan2(xπ8)=62×lim(xπ8)0tan(xπ8)tan(xπ8)=62×1=3//

Leave a Reply

Your email address will not be published. Required fields are marked *