Question-150596 Tinku Tara June 4, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 150596 by mr W last updated on 14/Aug/21 Commented by mr W last updated on 14/Aug/21 amorechallengingcase:3Dcasethreevertexofatetrahedronlieonthecoordinateaxes.thefourthoneliesonthespherewithradiusRandcenteratG(p,q,r).findtheminimumandmaximumvolumeofthetetrahedron. Answered by ajfour last updated on 14/Aug/21 r¯P=(ai+bj+ck3)+s23{(bj−ai)×(ck−ai)s232}=ai+bj+ck3+223s(bci+abk+acj)=ai+bj+ck3+22abc3s(ia+jb+kc)furthera2+b2=b2+c2=c2+a2=s2⇒2(a2+b2+c2)=3s2⇒a2=b2=c2=s22r¯P=s(i+j+k)32+2s(i+j+k)32r¯P=s2(i+j+k)=m(i+j+k)∣r¯P±(pi+qj+rk)∣=R∣(m−p)i+(m−q)j+(m−r)k∣=R23m2−2(p+q+r)m+(p2+q2+r2)=R2m=p+q+r3±(p+q+r)2−3(p2+q2+r2)+3R29m=s2⇒s=23{(p+q+r)±(p+q+r)2−3(p2+q2+r2−R2)}V=13(34s2)(s23)=s362 Answered by mr W last updated on 14/Aug/21 sayedgelengthoftetrahedroniss.ΔABCisanequilateraltrianglewithsidelengths.A(a,0,0)B(0,b,0)C(0,0,c)sinceAB=BC=CA=s,⇒a=b=c=s2eqn.ofplaneABCisx+y+z=s2thefourthvertexliesonthelinex=y=z=k,saysinceitliesalsoonthesphere(x−p)2+(y−q)2+(z−r)2=R2(k−p)2+(k−q)2+(k−r)2=R23k2−2(p+q+r)k+p2+q2+r2−R2=0⇒k=13{p+q+r±(p+q+r)2−3(p2+q2+r2−R2)}solutionexistsonlyif(p+q+r)2−3(p2+q2+r2)⩾3R2thedistancefromintersectionpointP(k,k,k)totheplaneABCistheheigthofthetetrahedron,whichis6s3.3k−s23=±6s33k=2(1±2)s2⇒s=32k1±2>0⇒s=21±2{p+q+r±(p+q+r)2−3(p2+q2+r2−R2)}thevolumeoftetrahedronisV=s362ingeneralthereexist2tetrahedrons. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-x-x-Next Next post: xyz-10-x-y-z-7-xy-xz-yz-2-Find-xy-z-xz-y-yz-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.