Menu Close

Question-150596




Question Number 150596 by mr W last updated on 14/Aug/21
Commented by mr W last updated on 14/Aug/21
a more challenging case: 3D case  three vertex of a tetrahedron lie on  the coordinate axes. the fourth one  lies on the sphere with radius R and  center at G(p,q,r).  find the minimum and maximum  volume of the tetrahedron.
amorechallengingcase:3Dcasethreevertexofatetrahedronlieonthecoordinateaxes.thefourthoneliesonthespherewithradiusRandcenteratG(p,q,r).findtheminimumandmaximumvolumeofthetetrahedron.
Answered by ajfour last updated on 14/Aug/21
r_P ^� =(((ai+bj+ck)/3))  +((s(√2))/( (√3))){(((bj−ai)×(ck−ai))/((s^2 (√3))/2))}    =((ai+bj+ck)/3)     +((2(√2))/(3s))(bci+abk+acj)    =((ai+bj+ck)/3)+((2(√2)abc)/(3s))((i/a)+(j/b)+(k/c))  further  a^2 +b^2 =b^2 +c^2 =c^2 +a^2 =s^2   ⇒  2(a^2 +b^2 +c^2 )=3s^2   ⇒ a^2 =b^2 =c^2 =(s^2 /2)  r_P ^� =((s(i+j+k))/( 3(√2)))+((2s(i+j+k))/(3(√2)))  r_P ^� =(s/( (√2)))(i+j+k)      =m(i+j+k)  ∣r_P ^� ±(pi+qj+rk)∣=R  ∣(m−p)i+(m−q)j+(m−r)k∣  =R^2   3m^2 −2(p+q+r)m+(p^2 +q^2 +r^2 )  =R^2   m=((p+q+r)/3)±(√(((p+q+r)^2 −3(p^2 +q^2 +r^2 )+3R^2 )/9))  m=(s/( (√2)))  ⇒ s=((√2)/3){(p+q+r)   ±(√((p+q+r)^2 −3(p^2 +q^2 +r^2 −R^2 )))}  V=(1/3)(((√3)/4)s^2 )(((s(√2))/( (√3))))=(s^3 /(6(√2)))
r¯P=(ai+bj+ck3)+s23{(bjai)×(ckai)s232}=ai+bj+ck3+223s(bci+abk+acj)=ai+bj+ck3+22abc3s(ia+jb+kc)furthera2+b2=b2+c2=c2+a2=s22(a2+b2+c2)=3s2a2=b2=c2=s22r¯P=s(i+j+k)32+2s(i+j+k)32r¯P=s2(i+j+k)=m(i+j+k)r¯P±(pi+qj+rk)∣=R(mp)i+(mq)j+(mr)k=R23m22(p+q+r)m+(p2+q2+r2)=R2m=p+q+r3±(p+q+r)23(p2+q2+r2)+3R29m=s2s=23{(p+q+r)±(p+q+r)23(p2+q2+r2R2)}V=13(34s2)(s23)=s362
Answered by mr W last updated on 14/Aug/21
say edge length of tetrahedron is s.  ΔABC is an equilateral triangle with  side length s.  A(a,0,0)  B(0,b,0)  C(0,0,c)  since AB=BC=CA=s,  ⇒a=b=c=(s/( (√2)))  eqn. of plane ABC is  x+y+z=(s/( (√2)))  the fourth vertex lies on the line  x=y=z=k, say  since it lies also on the sphere  (x−p)^2 +(y−q)^2 +(z−r)^2 =R^2   (k−p)^2 +(k−q)^2 +(k−r)^2 =R^2   3k^2 −2(p+q+r)k+p^2 +q^2 +r^2 −R^2 =0  ⇒k=(1/3){p+q+r±(√((p+q+r)^2 −3(p^2 +q^2 +r^2 −R^2 )))}  solution exists only if   (p+q+r)^2 −3(p^2 +q^2 +r^2 )≥3R^2     the distance from intersection point  P(k,k,k) to the plane ABC is the  heigth of the tetrahedron, which is  (((√6)s)/3).  ((3k−(s/( (√2))))/( (√3)))=±(((√6)s)/3)  3k=(((√2)(1±2)s)/2)  ⇒s=((3(√2)k)/(1±2))>0  ⇒s=((√2)/(1±2)){p+q+r±(√((p+q+r)^2 −3(p^2 +q^2 +r^2 −R^2 )))}  the volume of tetrahedron is  V=(s^3 /(6(√2)))  in general there exist 2 tetrahedrons.
sayedgelengthoftetrahedroniss.ΔABCisanequilateraltrianglewithsidelengths.A(a,0,0)B(0,b,0)C(0,0,c)sinceAB=BC=CA=s,a=b=c=s2eqn.ofplaneABCisx+y+z=s2thefourthvertexliesonthelinex=y=z=k,saysinceitliesalsoonthesphere(xp)2+(yq)2+(zr)2=R2(kp)2+(kq)2+(kr)2=R23k22(p+q+r)k+p2+q2+r2R2=0k=13{p+q+r±(p+q+r)23(p2+q2+r2R2)}solutionexistsonlyif(p+q+r)23(p2+q2+r2)3R2thedistancefromintersectionpointP(k,k,k)totheplaneABCistheheigthofthetetrahedron,whichis6s3.3ks23=±6s33k=2(1±2)s2s=32k1±2>0s=21±2{p+q+r±(p+q+r)23(p2+q2+r2R2)}thevolumeoftetrahedronisV=s362ingeneralthereexist2tetrahedrons.

Leave a Reply

Your email address will not be published. Required fields are marked *