Question Number 151538 by DELETED last updated on 21/Aug/21
Answered by DELETED last updated on 21/Aug/21
$$\left.\mathrm{3}\right).\:\underset{\mathrm{t}\rightarrow\infty} {\mathrm{lim}}\:\left[\left(\mathrm{sin}\:\frac{\mathrm{2}}{\mathrm{t}}\right)−\frac{\mathrm{3}}{\mathrm{t}}\right].\frac{\mathrm{t}}{\mathrm{6}}=..? \\ $$$$\:\:\:\:\:\:=\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\left(\mathrm{sin}\:\mathrm{2t}\right)−\mathrm{3t}\right].\frac{\mathrm{1}}{\mathrm{6t}} \\ $$$$\:\:\:\:\:\:=\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left[\left(\frac{\mathrm{sin}\:\mathrm{2t}}{\mathrm{6t}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\right] \\ $$$$\:\:\:\:\:\:=\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{2t}}{\mathrm{6t}}\:−\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\mathrm{2}}{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{2}−\mathrm{3}}{\mathrm{6}}=−\frac{\mathrm{1}}{\mathrm{6}}// \\ $$$$\:\:\:\:\:\: \\ $$$$ \\ $$
Answered by DELETED last updated on 21/Aug/21
$$\left.\mathrm{1}\right).\:\underset{\mathrm{t}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{t}\:\mathrm{sin}\:\left(\frac{\mathrm{2}}{\mathrm{t}}\right)=….? \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Jawab}: \\ $$$$\:\:\:\:\:\:\:\:=\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{y}}\:\mathrm{sin}\:\left(\mathrm{2y}\right) \\ $$$$\:\:\:\:\:\:\:=\:\underset{\mathrm{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\left(\mathrm{2y}\right)}{\mathrm{y}}\:=\:\mathrm{2}// \\ $$$$\:\:\:\:\:\:\:\: \\ $$
Answered by DELETED last updated on 21/Aug/21
$$\left.\mathrm{2}\right).\:\underset{\:\theta\rightarrow\infty\:} {\mathrm{lim}}\:\theta^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\frac{\mathrm{2}}{\theta}\:\right)=…? \\ $$$$\:\:\:\:\:\:=\underset{\:\theta\rightarrow\infty\:} {\mathrm{lim}}\:\theta^{\mathrm{2}} \left[\mathrm{1}−\left(\mathrm{1}−\mathrm{2sin}\:^{\mathrm{2}} \:\frac{\mathrm{1}}{\theta}\:\right]\right. \\ $$$$\:\:\:\:\:\:=\underset{\:\theta\rightarrow\infty\:} {\mathrm{lim}}\:\theta^{\mathrm{2}} \left[\mathrm{2sin}\:^{\mathrm{2}} \:\frac{\mathrm{1}}{\theta}\:\right] \\ $$$$\:\:\:\:\:\:=\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\theta^{\mathrm{2}} }\right)\left(\mathrm{2sin}\:^{\mathrm{2}} \theta\right) \\ $$$$\:\:\:\:\:\:=\mathrm{2}\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{sin}\:^{\mathrm{2}} \theta\right) \\ $$$$\:\:\:\:\:\:=\mathrm{2}\:\underset{\theta\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{sin}\:^{\mathrm{2}} \theta\right)}{\theta^{\mathrm{2}} }\:=\mathrm{2}×\mathrm{1}=\mathrm{2}// \\ $$