Menu Close

Question-151905




Question Number 151905 by mathdanisur last updated on 24/Aug/21
Answered by mindispower last updated on 24/Aug/21
8x^x y^y z^z 2^(x+y+z) =2(2x)^x .2(2y)^y .(2z)^z_    2(2t)^t ≥(t+1)^(t+1) ,t>0  ⇔2^(t+1) ≥t(1+(1/t))^(t+1)   ⇔(t+1)ln(2)≥ln(t)+(t+1)ln(1+(1/t))  f(t)=(t+1)ln(2)−ln(t)−(t+1)ln(1+(1/t))  f′(t)=ln(2)−(1/t)−ln(1+(1/t))+(1/t)=ln(((2t)/(t+1)))  f′(t)≥0,t∈[1,+∞[^� ,f′(t)<0,t∈]0,1[  ⇒f(t)≥f(1)=0  ⇒∀t>0,2.(2t)^(t+1) ≥(t+1)^(t+1)    ⇒2.(2x)^(x+1) .2(2y)^(y+1) .2(2z)^(z+1) ≥(x+1)^(x+1) (y+1)^(y+1) (z+1)^(z+1)   ⇔8x^x .y^y .z^z .2^(x+y+z) ≥(x+1)^(x+1) (y+1)^(y+1) (z+1)^(z+1)
8xxyyzz2x+y+z=2(2x)x.2(2y)y.(2z)z2(2t)t(t+1)t+1,t>02t+1t(1+1t)t+1(t+1)ln(2)ln(t)+(t+1)ln(1+1t)f(t)=(t+1)ln(2)ln(t)(t+1)ln(1+1t)f(t)=ln(2)1tln(1+1t)+1t=ln(2tt+1)Extra \left or missing \rightf(t)f(1)=0t>0,2.(2t)t+1(t+1)t+12.(2x)x+1.2(2y)y+1.2(2z)z+1(x+1)x+1(y+1)y+1(z+1)z+18xx.yy.zz.2x+y+z(x+1)x+1(y+1)y+1(z+1)z+1
Commented by mathdanisur last updated on 24/Aug/21
Thank you Ser
ThankyouSer
Commented by mindispower last updated on 28/Aug/21
plrasur
plrasur

Leave a Reply

Your email address will not be published. Required fields are marked *