Question-151905 Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 151905 by mathdanisur last updated on 24/Aug/21 Answered by mindispower last updated on 24/Aug/21 8xxyyzz2x+y+z=2(2x)x.2(2y)y.(2z)z2(2t)t⩾(t+1)t+1,t>0⇔2t+1⩾t(1+1t)t+1⇔(t+1)ln(2)⩾ln(t)+(t+1)ln(1+1t)f(t)=(t+1)ln(2)−ln(t)−(t+1)ln(1+1t)f′(t)=ln(2)−1t−ln(1+1t)+1t=ln(2tt+1)Extra \left or missing \rightExtra \left or missing \right⇒f(t)⩾f(1)=0⇒∀t>0,2.(2t)t+1⩾(t+1)t+1⇒2.(2x)x+1.2(2y)y+1.2(2z)z+1⩾(x+1)x+1(y+1)y+1(z+1)z+1⇔8xx.yy.zz.2x+y+z⩾(x+1)x+1(y+1)y+1(z+1)z+1 Commented by mathdanisur last updated on 24/Aug/21 ThankyouSer Commented by mindispower last updated on 28/Aug/21 plrasur Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Given-that-y-log-1-cos-2-x-1-e-2x-find-dy-dx-Next Next post: Question-20836 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.