Question-152010 Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 152010 by RB95 last updated on 25/Aug/21 Commented by RB95 last updated on 25/Aug/21 SltPouviezvousm′aider? Answered by puissant last updated on 25/Aug/21 Exercice1:1)cos4x=(eix+e−ix2)4=116(ei4x+4ei3xe−ix+6ei2xe−i2x+4eixe−i3x+e−i4x)=116((ei4x+e−i4x)+4(ei2x+e−i2x)+6)⇒cos4x=18cos4x+12cos2x+38⇒cos4x=8(cos4x−12cos2x−38)⇒cos4x=8cos4x−4(2cos2x−1)−3⇒cos4x=8cos4x−8cos2x+1..2)linearisonssin5xsin5x=(eix−e−ix2i)5=132i(ei5x−5ei4xe−ix+10ei3xe−i2x−10ei2xe−i3x+5eixe−i4x−e−i5x)=132i((ei5x−ei5x)−5(ei3x−e−i3x)+10(eix−e−ix))⇒sin5x=116sin5x−516sin3x+58sinx3)→sin(a+b)=sinacosb+cosasinb→cos(a+b)=cosacosb−sinasinb→tan(a+b)=sin(a+b)cos(a+b)=sinacosb+cosacosbcosacosb−sinasinbendivisantparcosacosb,ontan(a+b)=tana+tanb1−tanatanb..→sin(a−b)=sinacosb−cosacosb→defaconanalogue,ontrouvequetan(a−b)=tana−tanb1+tanatanb..Exercice2:selonMOIVRE,onsaitque(eiθ)n=einθ⇒(cosθ+isinθ)n=(cosnθ+isinnθ)serttoidecapourrepondreauxquestionsdel′exercie..Exercice3:1)jenevoispas.maisonsaitquearg(zn)≡narg(z)[2π]2)Enutilisantlafactorisationdesanglesmoities,ontrouve:z=[1+ei(π2+α)]n=2ncosn(π4+α2)ein(π4+α2)etdoncRe(z)=2ncosn(π4+α2)cos(nπ4+nα2)Re(z)=0⇔α=π2+2kπouα=(2k−1)πn−π2..Exercice4:1)z=22+i22nommonswet−wlesracinescarrees´dez.w=2+122+i2−122⇒w=122+2+i122−2d′abordz=eiπ4onremarqueque:(eiπ8)2=(ei2π8)=eiπ4donccos(π8)=122+2etsin(π8)=122−2(paridentification)careiπ8=cos(π8)+isin(π8)..2)→z=(1+i31−i)nonmontretrivialementque1+i3=2eiπ3et1−i=2e−iπ4⇒z=(22ei7π12)n=(2)nei7nπ12lemoduleest(2)netl′argumentest7nπ12;θ∈]−π;π[.→z=(1+cosθ+isinθ)n=(1+eiθ)n=(eiθ2(eiθ2+e−iθ2))n≪d′apreslafactorisationdesanglesmoities´≫.⇒z=(2cos(θ2)eiθ2)n=2ncosn(θ2)einθ2alorslemoduledezest2ncosn(θ2)etl′argumentestarg(z)=nθ2,θ∈]−π;π[ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: A-graph-of-x-versus-t-is-shown-in-Figure-Choose-correct-alternatives-from-below-a-The-particle-was-released-from-rest-at-t-0-b-At-B-the-acceleration-a-gt-0-c-At-C-the-velocity-and-the-acNext Next post: Demostration-of-the-volume-of-an-sphere-V-4pir-3-3-x-2-y-2-z-2-r-2-We-divide-the-sphere-in-8-parts-So-the-volume-of-a-part-is-0-r-0-r-2-x-2-r-2-x-2-y-2-y-x-Lets-as Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.