Menu Close

Question-152029




Question Number 152029 by mathdanisur last updated on 25/Aug/21
Commented by ghimisi last updated on 25/Aug/21
(1−4x)^2   or  1−4x^2
$$\left(\mathrm{1}−\mathrm{4}{x}\right)^{\mathrm{2}} \:\:{or}\:\:\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} \\ $$
Commented by mathdanisur last updated on 25/Aug/21
Sorry dear Ser  1-4x^2
$$\mathrm{Sorry}\:\mathrm{dear}\:\boldsymbol{\mathrm{S}}\mathrm{er}\:\:\mathrm{1}-\mathrm{4x}^{\mathrm{2}} \\ $$
Answered by ghimisi last updated on 26/Aug/21
∫_0 ^1 (1−4x^2 )(((4x^3 −3x−1)^2 ))^(1/3) =−(1/3)∫_0 ^1 (4x^3 −3x−1)^′ ∙(4x^3 −3x−1)^(2/3) =  −(1/5)(4x^3 −3x−1)^(5/3) ∣_0 ^1 =−(1/5)
$$\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} \right)\sqrt[{\mathrm{3}}]{\left(\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{1}\right)^{\mathrm{2}} }=−\frac{\mathrm{1}}{\mathrm{3}}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{1}\right)^{'} \centerdot\left(\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{1}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} = \\ $$$$−\frac{\mathrm{1}}{\mathrm{5}}\left(\mathrm{4}{x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{1}\right)^{\frac{\mathrm{5}}{\mathrm{3}}} \mid_{\mathrm{0}} ^{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{5}} \\ $$
Commented by mathdanisur last updated on 26/Aug/21
Thank you Ser, but ans: - (1/5)
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Ser},\:\mathrm{but}\:\mathrm{ans}:\:-\:\frac{\mathrm{1}}{\mathrm{5}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *