Menu Close

Question-152030




Question Number 152030 by mathdanisur last updated on 25/Aug/21
Commented by mathdanisur last updated on 26/Aug/21
Ser, Ω_n +Ω_(n+2) +...+Ω_(n×6) =1
$$\boldsymbol{\mathrm{S}}\mathrm{er},\:\Omega_{{n}} +\Omega_{{n}+\mathrm{2}} +…+\Omega_{{n}×\mathrm{6}} =\mathrm{1} \\ $$
Commented by ghimisi last updated on 25/Aug/21
Ω_p +Ω_(p+2) =(1/(p+1))
$$\Omega_{{p}} +\Omega_{{p}+\mathrm{2}} =\frac{\mathrm{1}}{{p}+\mathrm{1}} \\ $$
Answered by Kamel last updated on 25/Aug/21
Ω_n +Ω_(n+2) =∫_0 ^(π/4) tan^n (x)(1+tan^2 (x))dx=∫_0 ^1 t^n dt                      =(1/(n+1))
$$\Omega_{{n}} +\Omega_{{n}+\mathrm{2}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {tan}^{{n}} \left({x}\right)\left(\mathrm{1}+{tan}^{\mathrm{2}} \left({x}\right)\right){dx}=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{n}} {dt} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$ \\ $$
Commented by mathdanisur last updated on 26/Aug/21
Ser, Ω_n +Ω_(n+2) +Ω_(n+3) +...+Ω_(n+6) =1
$$\mathrm{Ser},\:\Omega_{{n}} +\Omega_{{n}+\mathrm{2}} +\Omega_{{n}+\mathrm{3}} +…+\Omega_{{n}+\mathrm{6}} =\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *