Menu Close

Question-15212




Question Number 15212 by ajfour last updated on 08/Jun/17
Commented by ajfour last updated on 08/Jun/17
Solution to Q.15175
SolutiontoQ.15175
Answered by ajfour last updated on 08/Jun/17
CD=(b/2), AD=(b/2)  ∠HDI+∠CDI=(π/2)   ∠HDI+(π/2)−∠C=(π/2) ⇒∠HDI=∠C  ∠HDL=(C/2)  HD =(b/2)sin Ccos C  HI=(b/2)sin^2 C  JD=(b/2)tan A ,  JH=JD−HD  JH=(b/2)(tan A−sin Ccos C)  ∠IJH=𝛂  , tan α=((HI)/(JH))  tan α=((sin^2 C)/(tan A−sin Ccos C))   ....(i)  ∠KJL=(α/2)  JK+KD=JD  (r/(tan (𝛂/2)))+(r/(tan (C/2)))=(b/2)tan A  so,  r=(b/2)tan A[((tan (𝛂/2)tan (C/2))/(tan (𝛂/2)+tan (C/2)))]        .........       ..........      .........  cos A=((b^2 +c^2 −a^2 )/(2bc))=((225+196−169)/(2×15×14))   cos A=(3/5)  ⇒ tan A=(4/3)  cos C=((a^2 +b^2 −c^2 )/(2ab))=((169+225−196)/(2×13×15))             =((33)/(65)).  ⇒ sin C=((56)/(65))  and tan C=((56)/(33))  tan α=((sin^2 C)/(tan A−sin Ccos C))              =(((56/65)^2 )/((4/3)−(56/65)(33/65)))  tan α= 0.8285 ⇒ α=0.692rad  C=tan^(−1) (56/33)=1.0383  r=(((b/2)tan A)/([(1/(tan (α/2)))+(1/(tan (C/2))]))    =  (((((15)/2)×(4/3)))/([(1/(tan (0.346)))+(1/(tan (0.519)))]))    = ((10)/((2.774+1.75)))= 2.21 units •
CD=b2,AD=b2HDI+CDI=π2HDI+π2C=π2HDI=CHDL=C2HD=b2sinCcosCHI=b2sin2CJD=b2tanA,JH=JDHDJH=b2(tanAsinCcosC)IJH=\boldsymbolα,tanα=HIJHtanα=sin2CtanAsinCcosC.(i)KJL=α2JK+KD=JD\boldsymbolrtan(\boldsymbolα/2)+\boldsymbolrtan(\boldsymbolC/2)=\boldsymbolb2tan\boldsymbolAso,\boldsymbolr=\boldsymbolb2tan\boldsymbolA[tan(\boldsymbolα/2)tan(\boldsymbolC/2)tan(\boldsymbolα/2)+tan(\boldsymbolC/2)].cosA=b2+c2a22bc=225+1961692×15×14cosA=35tanA=43cosC=a2+b2c22ab=169+2251962×13×15=3365.sinC=5665andtanC=5633tanα=sin2CtanAsinCcosC=(56/65)2(4/3)(56/65)(33/65)tanα=0.8285α=0.692radC=tan1(56/33)=1.0383\boldsymbolr=(\boldsymbolb/2)tan\boldsymbolA[1tan(α/2)+1tan(C/2]=(152×43)[1tan(0.346)+1tan(0.519)]=10(2.774+1.75)=2.21units
Commented by mrW1 last updated on 08/Jun/17
Tip  when we know the sides of a triangle,  the radius of its inscribed circle r_i   can also be calculated like this:  Area of triangle A=(√(s(s−a)(s−b)(s−c)))  but  A=(1/2)ar_i +(1/2)br_i +(1/2)cr_i =((a+b+c)/2)×r_i =sr_i   ⇒r_i =((√(s(s−a)(s−b)(s−c)))/s)=(√(((s−a)(s−b)(s−c))/s))
Tipwhenweknowthesidesofatriangle,theradiusofitsinscribedcirclericanalsobecalculatedlikethis:AreaoftriangleA=s(sa)(sb)(sc)butA=12ari+12bri+12cri=a+b+c2×ri=sriri=s(sa)(sb)(sc)s=(sa)(sb)(sc)s
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 08/Jun/17
hello my friend: mr Ajfour.  your solution is smart and simple.  i love it so much.thanks a lot.
hellomyfriend:mrAjfour.yoursolutionissmartandsimple.iloveitsomuch.thanksalot.
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 09/Jun/17
yes sir. we have:  S=p.r .  also:(1/h_a )+(1/h_b )+(1/h_c )=(1/r)
yessir.wehave:S=p.r.also:1ha+1hb+1hc=1r

Leave a Reply

Your email address will not be published. Required fields are marked *