Menu Close

Question-152147




Question Number 152147 by john_santu last updated on 26/Aug/21
Answered by Ar Brandon last updated on 26/Aug/21
I_n =∫_(−1) ^1 ((√(x^2 +(1/n)))−∣x∣)dx      =2∫_0 ^1 ((√(x^2 +(1/n)))−∣x∣)dx      =2∫_0 ^(argsh((√n))) ((1/n)(√(sinh^2 ϑ+1)))coshϑdϑ−1      =(1/n)∫_0 ^(argsh((√n))) (cosh2ϑ+1)dϑ−1      =(1/n)[((sinh(2ϑ))/2)+ϑ]_0 ^(argsh((√n))) −1      =(1/n)(((sh(2argsh((√n))))/2)+argsh((√n)))−1=0
In=11(x2+1nx)dx=201(x2+1nx)dx=20argsh(n)(1nsinh2ϑ+1)coshϑdϑ1=1n0argsh(n)(cosh2ϑ+1)dϑ1=1n[sinh(2ϑ)2+ϑ]0argsh(n)1=1n(sh(2argsh(n))2+argsh(n))1=0

Leave a Reply

Your email address will not be published. Required fields are marked *