Menu Close

Question-152266




Question Number 152266 by mathdanisur last updated on 26/Aug/21
Answered by qaz last updated on 27/Aug/21
∫_0 ^1 Li_2 (x)ln(1+x)dx  =[(1+x)ln(1+x)−(1+x)]Li_2 (x)∣_0 ^1 +∫_0 ^1 [(1+x)ln(1+x)−(1+x)]((ln(1−x))/x)dx  =(π^2 /3)(ln2−1)+∫_0 ^1 (((ln(1+x)ln(1−x))/x)+ln(1+x)ln(1−x)−((ln(1−x))/x)−ln(1−x))dx  =(π^2 /3)(ln2−1)−(5/8)ζ(3)+∫_0 ^1 ln(2−x)lnxdx+(π^2 /6)+1  =(π^2 /3)ln2−(π^2 /6)−(5/8)ζ(3)+1+(xlnx−x)ln(2−x)∣_0 ^1 +∫_0 ^1 ((x(lnx−1))/(2−x))dx  =(π^2 /3)ln2−(π^2 /6)−(5/8)ζ(3)+1+∫_0 ^1 (1−(2/(2−x)))(1−lnx)dx  =...+∫_0 ^1 (1−lnx)dx−2∫_0 ^1 (dx/(2−x))+2∫_0 ^1 ((lnx)/(2−x))dx  =...+2−2ln2−2∫_2 ^1 ((ln(2−x))/x)dx  =...+2−2ln2−2∫_1 ^(1/2) ((ln2+ln(1−x))/x)dx  =...+2−2ln2−2ln2lnx∣_1 ^(1/2) +2Li_2 (x)∣_1 ^(1/2)   =...+2−2ln2+ln^2 2−(π^2 /6)  =(π^2 /3)(ln2−1)−(5/8)ζ(3)+3−2ln2+ln^2 2  −−−−−−−−−−−−−−−  what is your answer?
$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{dx} \\ $$$$=\left[\left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)−\left(\mathrm{1}+\mathrm{x}\right)\right]\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} \left[\left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)−\left(\mathrm{1}+\mathrm{x}\right)\right]\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\left(\mathrm{ln2}−\mathrm{1}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}+\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)−\frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}−\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\right)\mathrm{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\left(\mathrm{ln2}−\mathrm{1}\right)−\frac{\mathrm{5}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\left(\mathrm{2}−\mathrm{x}\right)\mathrm{lnxdx}+\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\mathrm{1} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\mathrm{ln2}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{5}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)+\mathrm{1}+\left(\mathrm{xlnx}−\mathrm{x}\right)\mathrm{ln}\left(\mathrm{2}−\mathrm{x}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} +\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{x}\left(\mathrm{lnx}−\mathrm{1}\right)}{\mathrm{2}−\mathrm{x}}\mathrm{dx} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\mathrm{ln2}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{5}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)+\mathrm{1}+\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{2}−\mathrm{x}}\right)\left(\mathrm{1}−\mathrm{lnx}\right)\mathrm{dx} \\ $$$$=…+\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{lnx}\right)\mathrm{dx}−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\mathrm{2}−\mathrm{x}}+\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{lnx}}{\mathrm{2}−\mathrm{x}}\mathrm{dx} \\ $$$$=…+\mathrm{2}−\mathrm{2ln2}−\mathrm{2}\int_{\mathrm{2}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{2}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=…+\mathrm{2}−\mathrm{2ln2}−\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{1}/\mathrm{2}} \frac{\mathrm{ln2}+\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=…+\mathrm{2}−\mathrm{2ln2}−\mathrm{2ln2lnx}\mid_{\mathrm{1}} ^{\mathrm{1}/\mathrm{2}} +\mathrm{2Li}_{\mathrm{2}} \left(\mathrm{x}\right)\mid_{\mathrm{1}} ^{\mathrm{1}/\mathrm{2}} \\ $$$$=…+\mathrm{2}−\mathrm{2ln2}+\mathrm{ln}^{\mathrm{2}} \mathrm{2}−\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{3}}\left(\mathrm{ln2}−\mathrm{1}\right)−\frac{\mathrm{5}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)+\mathrm{3}−\mathrm{2ln2}+\mathrm{ln}^{\mathrm{2}} \mathrm{2} \\ $$$$−−−−−−−−−−−−−−− \\ $$$$\mathrm{what}\:\mathrm{is}\:\mathrm{your}\:\mathrm{answer}? \\ $$
Commented by mathdanisur last updated on 27/Aug/21
(π^2 /6)ln(4)−ln(4)+ln^2 (2)−(π^2 /3)−(5/8)ζ(3)+3
$$\frac{\pi^{\mathrm{2}} }{\mathrm{6}}{ln}\left(\mathrm{4}\right)−{ln}\left(\mathrm{4}\right)+{ln}^{\mathrm{2}} \left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{3}}−\frac{\mathrm{5}}{\mathrm{8}}\zeta\left(\mathrm{3}\right)+\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *