Menu Close

Question-152364




Question Number 152364 by mathdanisur last updated on 27/Aug/21
Answered by Kamel last updated on 28/Aug/21
  Ω(a,b)=∫_0 ^π ((Ln(tan(ax)))/(1−2bcos(x)+b^2 ))dx , ∣b∣<1, 0<a≤(1/2).  We have: Ln(tan(ax))=−2Σ_(n=0) ^(+∞) ((cos(2(2n+1)ax))/(2n+1))  So: Ω(a,b)=−Σ_(n=0) ^(+∞) (1/(2n+1))∫_0 ^(2π) ((cos(2(2n+1)ax))/(1−2bcos(x)+b^2 ))dx  I_n (a,b)=∫_0 ^(2π) ((cos(2(2n+1)ax))/(1−2bcos(x)+b^2 ))dx=−∮_(∣z∣=1) (z^(2(2n+1)a) /(bz^2 −(1+b^2 )z+b)) (dz/i)                 =−∮_(∣z∣=1) (z^(2(2n+1)a) /(b(z−b)(z−(1/b)))) (dz/i)                =2πRes[(z^(2^ (2n+1)a) /(b(z−b)(z−(1/b)))),z=b]=((2π)/(1−b^2 )) b^(2(2n+1)a)   ∴ Ω(a,b)=−((2π)/(1−b^2 ))Σ_(n=0) ^(+∞) (b^(2a(2n+1)) /(2n+1))     Or:  Σ_(n=0) ^(+∞) (x^(2n+1) /(2n+1))=∫_0 ^x Σ_(n=0) ^(+∞) t^(2n) dt=∫_0 ^x (dt/(1−t^2 ))=(1/2)∫_0 ^x ((1/(1−t))+(1/(1+t)))dt=−(1/2)Ln(((1−x)/(1+x)))         Then:                                          ∫_0 ^𝛑 ((Ln(tan(ax)))/(1−2bcos(x)+b^2 ))dx=(𝛑/(1−b^2 ))Ln(((1−b^(2a) )/(1+b^(2a) )))                                                             KAMEL BENAICHA
Ω(a,b)=0πLn(tan(ax))12bcos(x)+b2dx,b∣<1,0<a12.Wehave:Ln(tan(ax))=2+n=0cos(2(2n+1)ax)2n+1So:Ω(a,b)=+n=012n+102πcos(2(2n+1)ax)12bcos(x)+b2dxIn(a,b)=02πcos(2(2n+1)ax)12bcos(x)+b2dx=z∣=1z2(2n+1)abz2(1+b2)z+bdzi=z∣=1z2(2n+1)ab(zb)(z1b)dzi=2πRes[z2(2n+1)ab(zb)(z1b),z=b]=2π1b2b2(2n+1)aΩ(a,b)=2π1b2+n=0b2a(2n+1)2n+1Or:+n=0x2n+12n+1=0x+n=0t2ndt=0xdt1t2=120x(11t+11+t)dt=12Ln(1x1+x)Then:0πLn(tan(ax))12bcos(x)+b2dx=π1b2Ln(1b2a1+b2a)KAMELBENAICHA
Commented by puissant last updated on 28/Aug/21
Mr Kamel you are really strong..
MrKamelyouarereallystrong..
Commented by Kamel last updated on 28/Aug/21
Thank you.
Thankyou.

Leave a Reply

Your email address will not be published. Required fields are marked *