Question-152364 Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 152364 by mathdanisur last updated on 27/Aug/21 Answered by Kamel last updated on 28/Aug/21 Ω(a,b)=∫0πLn(tan(ax))1−2bcos(x)+b2dx,∣b∣<1,0<a⩽12.Wehave:Ln(tan(ax))=−2∑+∞n=0cos(2(2n+1)ax)2n+1So:Ω(a,b)=−∑+∞n=012n+1∫02πcos(2(2n+1)ax)1−2bcos(x)+b2dxIn(a,b)=∫02πcos(2(2n+1)ax)1−2bcos(x)+b2dx=−∮∣z∣=1z2(2n+1)abz2−(1+b2)z+bdzi=−∮∣z∣=1z2(2n+1)ab(z−b)(z−1b)dzi=2πRes[z2(2n+1)ab(z−b)(z−1b),z=b]=2π1−b2b2(2n+1)a∴Ω(a,b)=−2π1−b2∑+∞n=0b2a(2n+1)2n+1Or:∑+∞n=0x2n+12n+1=∫0x∑+∞n=0t2ndt=∫0xdt1−t2=12∫0x(11−t+11+t)dt=−12Ln(1−x1+x)Then:∫0πLn(tan(ax))1−2bcos(x)+b2dx=π1−b2Ln(1−b2a1+b2a)KAMELBENAICHA Commented by puissant last updated on 28/Aug/21 MrKamelyouarereallystrong.. Commented by Kamel last updated on 28/Aug/21 Thankyou. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Let-n-be-an-even-positive-integer-such-that-n-2-is-odd-and-let-0-1-n-1-be-the-complex-roots-of-unity-of-order-n-Prove-that-k-0-n-1-a-b-k-2-a-n-2-b-n-2-2Next Next post: For-a-particle-performing-uniform-circular-motion-angular-momentum-is-constant-in-magnitude-but-direction-keeps-changing-Am-I-right-or-wrong- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.