Menu Close

Question-152431




Question Number 152431 by fotosy2k last updated on 28/Aug/21
Commented by fotosy2k last updated on 28/Aug/21
help pls
helppls
Commented by EDWIN88 last updated on 28/Aug/21
 lim_(x→0^− ) f(x)=lim_(x→0^− ) (((e^(5x) −e^(2x) )/x))   =lim_(x→0^− ) (((e^(5x) −1)/x) +((1−e^(2x) )/x))   =lim_(x→0^− ) (((e^(5x) −1)/x))−lim_(x→0^− ) (((e^(2x) −1)/x))   = 5−2=3     lim_(x→0^+ )  f(x)=lim_(x→0^+ ) (3)=3  so lim_(x→0^− ) f(x)=lim_(x→0^+ ) f(x)=f(0)=3  it follows that f(x) continu at x=0
limx0f(x)=limx0(e5xe2xx)=limx0(e5x1x+1e2xx)=limx0(e5x1x)limx0(e2x1x)=52=3limx0+f(x)=limx0+(3)=3solimx0f(x)=limx0+f(x)=f(0)=3itfollowsthatf(x)continuatx=0
Commented by fotosy2k last updated on 30/Aug/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *