Question Number 152545 by liberty last updated on 29/Aug/21
Answered by Olaf_Thorendsen last updated on 31/Aug/21
$$\: \\ $$$$\mathrm{cos}\frac{\pi}{\mathrm{12}}\:=\:\mathrm{cos}\left(\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{6}}\right) \\ $$$$\mathrm{cos}\frac{\pi}{\mathrm{12}}\:=\:\mathrm{cos}\frac{\pi}{\mathrm{4}}\mathrm{cos}\frac{\pi}{\mathrm{6}}+\mathrm{sin}\frac{\pi}{\mathrm{4}}\mathrm{sin}\frac{\pi}{\mathrm{6}} \\ $$$$\mathrm{cos}\frac{\pi}{\mathrm{12}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}.\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}.\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{cos}\frac{\pi}{\mathrm{12}}\:=\:\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\:\:\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{sin}\frac{\pi}{\mathrm{12}}\:=\:\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}−\frac{\pi}{\mathrm{6}}\right) \\ $$$$\mathrm{sin}\frac{\pi}{\mathrm{12}}\:=\:\mathrm{sin}\frac{\pi}{\mathrm{4}}\mathrm{cos}\frac{\pi}{\mathrm{6}}−\mathrm{sin}\frac{\pi}{\mathrm{6}}\mathrm{cos}\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{sin}\frac{\pi}{\mathrm{12}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}.\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\mathrm{sin}\frac{\pi}{\mathrm{12}}\:=\:\frac{−\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{2}\sqrt{\mathrm{2}}}\:\:\:\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\mathrm{With}\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\:: \\ $$$$\mathrm{A}\:=\:\begin{pmatrix}{\mathrm{cos}\frac{\pi}{\mathrm{12}}}&{\mathrm{sin}\frac{\pi}{\mathrm{12}}}&{\mathrm{0}}\\{−\mathrm{sin}\frac{\pi}{\mathrm{12}}}&{\mathrm{cos}\frac{\pi}{\mathrm{12}}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\frac{\mathrm{1}}{\mathrm{2}}}\end{pmatrix} \\ $$$$\mathrm{A}^{\mathrm{13}} \:=\:\begin{pmatrix}{\mathrm{cos}\left(\mathrm{13}×\frac{\pi}{\mathrm{12}}\right)}&{\mathrm{sin}\left(\mathrm{13}×\frac{\pi}{\mathrm{12}}\right)}&{\mathrm{0}}\\{−\mathrm{sin}\left(\mathrm{13}×\frac{\pi}{\mathrm{12}}\right)}&{\mathrm{cos}\left(\mathrm{13}×\frac{\pi}{\mathrm{12}}\right)}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{13}} }}\end{pmatrix} \\ $$$$\mathrm{A}^{\mathrm{13}} \:=\:\begin{pmatrix}{−\mathrm{cos}\frac{\pi}{\mathrm{12}}}&{−\mathrm{sin}\frac{\pi}{\mathrm{12}}}&{\mathrm{0}}\\{\mathrm{sin}\frac{\pi}{\mathrm{12}}}&{−\mathrm{cos}\frac{\pi}{\mathrm{12}}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\frac{\mathrm{1}}{\mathrm{8192}}}\end{pmatrix} \\ $$