Menu Close

Question-152647




Question Number 152647 by mr W last updated on 30/Aug/21
Commented by mr W last updated on 30/Aug/21
find ((FG)/(GB))=?
$${find}\:\frac{{FG}}{{GB}}=? \\ $$
Answered by mr W last updated on 30/Aug/21
Commented by mr W last updated on 30/Aug/21
let AB=a, BC=b  HA=HC=HE=R  GE=GD=GB=r  ((AB)/(BF))=((BF)/(BC))  ⇒BF^2 =AB×BC=ab   ...(i)  R=((AC)/2)=((a+b)/2)  HB=a−R=((a−b)/2)  HG^2 =HE^2 −GE^2 =R^2 −r^2 =(((a+b)/2))^2 −r^2   HG^2 =HB^2 +BG^2 =(((a−b)/2))^2 +r^2   ⇒(((a+b)/2))^2 −r^2 =(((a−b)/2))^2 +r^2   ⇒(((a+b)/2))^2 −(((a−b)/2))^2 =2r^2   ⇒2r^2 =ab   ...(ii)  BF^2 =2r^2   ⇒BF=(√2)r=(√2)GB  ⇒FG+GB=(√2)GB  ⇒((FG)/(GB))=(√2)−1
$${let}\:{AB}={a},\:{BC}={b} \\ $$$${HA}={HC}={HE}={R} \\ $$$${GE}={GD}={GB}={r} \\ $$$$\frac{{AB}}{{BF}}=\frac{{BF}}{{BC}} \\ $$$$\Rightarrow{BF}^{\mathrm{2}} ={AB}×{BC}={ab}\:\:\:…\left({i}\right) \\ $$$${R}=\frac{{AC}}{\mathrm{2}}=\frac{{a}+{b}}{\mathrm{2}} \\ $$$${HB}={a}−{R}=\frac{{a}−{b}}{\mathrm{2}} \\ $$$${HG}^{\mathrm{2}} ={HE}^{\mathrm{2}} −{GE}^{\mathrm{2}} ={R}^{\mathrm{2}} −{r}^{\mathrm{2}} =\left(\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$$${HG}^{\mathrm{2}} ={HB}^{\mathrm{2}} +{BG}^{\mathrm{2}} =\left(\frac{{a}−{b}}{\mathrm{2}}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$$\Rightarrow\left(\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} =\left(\frac{{a}−{b}}{\mathrm{2}}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} \\ $$$$\Rightarrow\left(\frac{{a}+{b}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\frac{{a}−{b}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{2}{r}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}{r}^{\mathrm{2}} ={ab}\:\:\:…\left({ii}\right) \\ $$$${BF}^{\mathrm{2}} =\mathrm{2}{r}^{\mathrm{2}} \\ $$$$\Rightarrow{BF}=\sqrt{\mathrm{2}}{r}=\sqrt{\mathrm{2}}{GB} \\ $$$$\Rightarrow{FG}+{GB}=\sqrt{\mathrm{2}}{GB} \\ $$$$\Rightarrow\frac{{FG}}{{GB}}=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$
Commented by Tawa11 last updated on 30/Aug/21
Weldone sir. Thanks. God bless you more.
$$\mathrm{Weldone}\:\mathrm{sir}.\:\mathrm{Thanks}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}. \\ $$
Commented by Tawa11 last updated on 30/Aug/21
Am learning from all your geometry solution.  I just start from beginning.
$$\mathrm{Am}\:\mathrm{learning}\:\mathrm{from}\:\mathrm{all}\:\mathrm{your}\:\mathrm{geometry}\:\mathrm{solution}. \\ $$$$\mathrm{I}\:\mathrm{just}\:\mathrm{start}\:\mathrm{from}\:\mathrm{beginning}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *