Menu Close

Question-152670




Question Number 152670 by liberty last updated on 31/Aug/21
Answered by Olaf_Thorendsen last updated on 31/Aug/21
x_n  = x_(n−1) +x_(n−2)   x_n  −x_(n−1) −x_(n−2)  = 0  r^2 −r−1 = 0  r = ((1+(√5))/2) (= ϕ : golden ratio)  or r = ((1−(√5))/2) (= ϕ′ = −(1/ϕ))  x_n  = λ(((1+(√5))/2))^n +μ(((1−(√5))/2))^n     x_0  = λ(((1+(√5))/2))^0 +μ(((1−(√5))/2))^0  = 1  x_0  = λ+μ = 1   (1)    x_1  = λ(((1+(√5))/2))^1 +μ(((1−(√5))/2))^1  = 1  λϕ−(μ/ϕ) = 1    (2)    ⇒ λ = (1/2)(1+(1/( (√5)))) = (ϕ/( (√5)))  and μ = (1/2)(1−(1/( (√5)))) = −((ϕ′)/( (√5)))  x_n  = (ϕ/( (√5)))ϕ^n +(−((ϕ′)/( (√5))))ϕ′^n   x_n  = (1/( (√5)))(ϕ^(n+1) −ϕ′^(n+1) )
$${x}_{{n}} \:=\:{x}_{{n}−\mathrm{1}} +{x}_{{n}−\mathrm{2}} \\ $$$${x}_{{n}} \:−{x}_{{n}−\mathrm{1}} −{x}_{{n}−\mathrm{2}} \:=\:\mathrm{0} \\ $$$${r}^{\mathrm{2}} −{r}−\mathrm{1}\:=\:\mathrm{0} \\ $$$${r}\:=\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\left(=\:\varphi\::\:\mathrm{golden}\:\mathrm{ratio}\right) \\ $$$$\mathrm{or}\:{r}\:=\:\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\:\left(=\:\varphi'\:=\:−\frac{\mathrm{1}}{\varphi}\right) \\ $$$${x}_{{n}} \:=\:\lambda\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} +\mu\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \\ $$$$ \\ $$$${x}_{\mathrm{0}} \:=\:\lambda\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{0}} +\mu\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{0}} \:=\:\mathrm{1} \\ $$$${x}_{\mathrm{0}} \:=\:\lambda+\mu\:=\:\mathrm{1}\:\:\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$${x}_{\mathrm{1}} \:=\:\lambda\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{1}} +\mu\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{1}} \:=\:\mathrm{1} \\ $$$$\lambda\varphi−\frac{\mu}{\varphi}\:=\:\mathrm{1}\:\:\:\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\Rightarrow\:\lambda\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)\:=\:\frac{\varphi}{\:\sqrt{\mathrm{5}}} \\ $$$$\mathrm{and}\:\mu\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\right)\:=\:−\frac{\varphi'}{\:\sqrt{\mathrm{5}}} \\ $$$${x}_{{n}} \:=\:\frac{\varphi}{\:\sqrt{\mathrm{5}}}\varphi^{{n}} +\left(−\frac{\varphi'}{\:\sqrt{\mathrm{5}}}\right)\varphi'^{{n}} \\ $$$${x}_{{n}} \:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\varphi^{{n}+\mathrm{1}} −\varphi'^{{n}+\mathrm{1}} \right) \\ $$
Commented by puissant last updated on 31/Aug/21
Binet formula..
$${Binet}\:{formula}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *