Question Number 152722 by SANOGO last updated on 31/Aug/21
Answered by Olaf_Thorendsen last updated on 31/Aug/21
$$\bullet\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−\frac{\mathrm{1}}{{x}}} }{{x}^{\mathrm{2}} }\:{dx} \\ $$$$\mathrm{Let}\:{u}\:=\:\frac{\mathrm{1}}{{x}}\:: \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{1}} ^{\infty} {e}^{−{u}} \:{du}\:=\:\left[−{e}^{−{u}} \right]_{\mathrm{1}} ^{\infty} \:=\:\frac{\mathrm{1}}{{e}}\:\:\:\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\bullet\:\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{e}^{−\frac{\mathrm{1}}{{x}}} }{{x}^{\mathrm{2}} }\:{dx} \\ $$$$\mathrm{I}\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{n}}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{e}^{−\frac{\mathrm{1}}{\frac{{k}}{{n}}}} }{\frac{{k}^{\mathrm{2}} }{{n}^{\mathrm{2}} }} \\ $$$$\mathrm{I}\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{e}^{−\frac{{n}}{{k}}} }{{k}^{\mathrm{2}} }\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\:: \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{e}^{−\frac{{n}}{{k}}} }{{k}^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{{e}} \\ $$
Commented by SANOGO last updated on 31/Aug/21
$${merci}\:{bien}\:{mon}\:{prof} \\ $$
Commented by Olaf_Thorendsen last updated on 31/Aug/21
$$\mathrm{Je}\:\mathrm{ne}\:\mathrm{suis}\:\mathrm{pas}\:\mathrm{prof}. \\ $$
Commented by SANOGO last updated on 31/Aug/21
$${ok}\:{merci}\:{bien}\:{c}'{est}\:{gentil} \\ $$