Menu Close

Question-152764




Question Number 152764 by mnjuly1970 last updated on 01/Sep/21
Commented by prakash jain last updated on 01/Sep/21
1) x=n+f  n≥0  n=(n+f)(n+f)=(n+f)^2   f^2 +2nf+n(n−1)=0  f=((−2n±(√(4n^2 +4n−4n^2 )))/2)  f=−n±(√n)  n=1,f=0  n=0,f=0  n<0  n=−(n+f)^2   f^2 +2nf+n(n+1)=0  f=−n±(√(−n))  f<1⇒no solution for n<0 (wrong)  A mistake pointed by mr W.  for n<0   n=−1⇒f=0  x=−1  n=−2⇒f=2−(√2)  x=n+f=−(√2)  −−−−−−−−−−−  x=0 or x=1  x=−1, x=−(√2)
$$\left.\mathrm{1}\right)\:{x}={n}+{f} \\ $$$${n}\geqslant\mathrm{0} \\ $$$${n}=\left({n}+{f}\right)\left({n}+{f}\right)=\left({n}+{f}\right)^{\mathrm{2}} \\ $$$${f}^{\mathrm{2}} +\mathrm{2}{nf}+{n}\left({n}−\mathrm{1}\right)=\mathrm{0} \\ $$$${f}=\frac{−\mathrm{2}{n}\pm\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{4}{n}−\mathrm{4}{n}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$${f}=−{n}\pm\sqrt{{n}} \\ $$$${n}=\mathrm{1},{f}=\mathrm{0} \\ $$$${n}=\mathrm{0},{f}=\mathrm{0} \\ $$$${n}<\mathrm{0} \\ $$$${n}=−\left({n}+{f}\right)^{\mathrm{2}} \\ $$$${f}^{\mathrm{2}} +\mathrm{2}{nf}+{n}\left({n}+\mathrm{1}\right)=\mathrm{0} \\ $$$${f}=−{n}\pm\sqrt{−{n}} \\ $$$${f}<\mathrm{1}\Rightarrow{no}\:{solution}\:{for}\:{n}<\mathrm{0}\:\left({wrong}\right) \\ $$$$\mathrm{A}\:\mathrm{mistake}\:\mathrm{pointed}\:\mathrm{by}\:\mathrm{mr}\:\mathrm{W}. \\ $$$$\mathrm{for}\:{n}<\mathrm{0}\: \\ $$$${n}=−\mathrm{1}\Rightarrow{f}=\mathrm{0} \\ $$$${x}=−\mathrm{1} \\ $$$${n}=−\mathrm{2}\Rightarrow{f}=\mathrm{2}−\sqrt{\mathrm{2}} \\ $$$${x}={n}+{f}=−\sqrt{\mathrm{2}} \\ $$$$−−−−−−−−−−− \\ $$$${x}=\mathrm{0}\:\mathrm{or}\:{x}=\mathrm{1} \\ $$$${x}=−\mathrm{1},\:{x}=−\sqrt{\mathrm{2}} \\ $$
Commented by mr W last updated on 01/Sep/21
i think x=−(√2) is also a solution.  ⌊−(√2)⌋=−2  −(√2)×∣−(√2)∣=−2 ✓
$${i}\:{think}\:{x}=−\sqrt{\mathrm{2}}\:{is}\:{also}\:{a}\:{solution}. \\ $$$$\lfloor−\sqrt{\mathrm{2}}\rfloor=−\mathrm{2} \\ $$$$−\sqrt{\mathrm{2}}×\mid−\sqrt{\mathrm{2}}\mid=−\mathrm{2}\:\checkmark \\ $$
Answered by prakash jain last updated on 01/Sep/21
(2) is same as 1 put y=x−1
$$\left(\mathrm{2}\right)\:\mathrm{is}\:\mathrm{same}\:\mathrm{as}\:\mathrm{1}\:\mathrm{put}\:{y}={x}−\mathrm{1} \\ $$
Answered by MJS_new last updated on 02/Sep/21
(3)  (a) obviously x=−2∨x=0∨x=1  (b)  ∣⌊x⌋−1∣<∣x^2 −1∣ ∀ (x<−3)∨(x>1)  ⇒ there could be a solution −3<x<−2  ⇒ ∣⌊x⌋−1∣=4∧∣x^2 −1∣=x^2 −1  ⇒ we have x^2 −1=4∧−3<x<−2 ⇒ x=−(√5)
$$\left(\mathrm{3}\right) \\ $$$$\left({a}\right)\:\mathrm{obviously}\:{x}=−\mathrm{2}\vee{x}=\mathrm{0}\vee{x}=\mathrm{1} \\ $$$$\left({b}\right) \\ $$$$\mid\lfloor{x}\rfloor−\mathrm{1}\mid<\mid{x}^{\mathrm{2}} −\mathrm{1}\mid\:\forall\:\left({x}<−\mathrm{3}\right)\vee\left({x}>\mathrm{1}\right) \\ $$$$\Rightarrow\:\mathrm{there}\:\mathrm{could}\:\mathrm{be}\:\mathrm{a}\:\mathrm{solution}\:−\mathrm{3}<{x}<−\mathrm{2} \\ $$$$\Rightarrow\:\mid\lfloor{x}\rfloor−\mathrm{1}\mid=\mathrm{4}\wedge\mid{x}^{\mathrm{2}} −\mathrm{1}\mid={x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{we}\:\mathrm{have}\:{x}^{\mathrm{2}} −\mathrm{1}=\mathrm{4}\wedge−\mathrm{3}<{x}<−\mathrm{2}\:\Rightarrow\:{x}=−\sqrt{\mathrm{5}} \\ $$
Answered by mnjuly1970 last updated on 02/Sep/21
  ⌊ x ⌋=k      x=(√(k ))  if  x ≥0     x= −(√(−k))   x <0        k≤ (√k) < k+1  ⇒  k=0 , 1        ∵ x =0 , 1 .......(★ )           k≤ −(√(−k)) <k+1                −k−1< (√(−k)) ≤ −k ⇒ k=0 ,−1, −2          ∵ x =0 , −1 , −(√2)  ....(★ )          (★)∪ (★★) ⇒  x ∈ {−(√2), −1 , 0 , 1 }
$$\:\:\lfloor\:{x}\:\rfloor={k}\: \\ $$$$\:\:\:{x}=\sqrt{{k}\:}\:\:{if}\:\:{x}\:\geqslant\mathrm{0} \\ $$$$\:\:\:{x}=\:−\sqrt{−{k}}\:\:\:{x}\:<\mathrm{0} \\ $$$$\:\:\:\:\:\:{k}\leqslant\:\sqrt{{k}}\:<\:{k}+\mathrm{1}\:\:\Rightarrow\:\:{k}=\mathrm{0}\:,\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\because\:{x}\:=\mathrm{0}\:,\:\mathrm{1}\:…….\left(\bigstar\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:{k}\leqslant\:−\sqrt{−{k}}\:<{k}+\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{k}−\mathrm{1}<\:\sqrt{−{k}}\:\leqslant\:−{k}\:\Rightarrow\:{k}=\mathrm{0}\:,−\mathrm{1},\:−\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\because\:{x}\:=\mathrm{0}\:,\:−\mathrm{1}\:,\:−\sqrt{\mathrm{2}}\:\:….\left(\bigstar\:\right) \\ $$$$\:\:\: \\ $$$$\:\:\:\left(\bigstar\right)\cup\:\left(\bigstar\bigstar\right)\:\Rightarrow\:\:{x}\:\in\:\left\{−\sqrt{\mathrm{2}},\:−\mathrm{1}\:,\:\mathrm{0}\:,\:\mathrm{1}\:\right\}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *