Menu Close

Question-152935




Question Number 152935 by DELETED last updated on 03/Sep/21
Answered by DELETED last updated on 03/Sep/21
3.a). Q_2 =L_i +(((N/2−<Σf)/(Σf_i )))×C                 =(45−0.5)+(((40/2−16)/(12)))×5       =44,5+((4×5)/(12))=44,5+1,67      =46,17//    3 b). Mod=L_i +((δ_1 /(δ_1 +δ_2 )))×C             =44,5+((((12−8))/((12−8)+(12−6))))×5      =44,5+(((4×5)/(4+6)))=44,5+2=46,5//
$$\left.\mathrm{3}.\mathrm{a}\right).\:\mathrm{Q}_{\mathrm{2}} =\mathrm{L}_{\mathrm{i}} +\left(\frac{\mathrm{N}/\mathrm{2}−<\Sigma\mathrm{f}}{\Sigma\mathrm{f}_{\mathrm{i}} }\right)×\mathrm{C} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\mathrm{45}−\mathrm{0}.\mathrm{5}\right)+\left(\frac{\mathrm{40}/\mathrm{2}−\mathrm{16}}{\mathrm{12}}\right)×\mathrm{5} \\ $$$$\:\:\:\:\:=\mathrm{44},\mathrm{5}+\frac{\mathrm{4}×\mathrm{5}}{\mathrm{12}}=\mathrm{44},\mathrm{5}+\mathrm{1},\mathrm{67} \\ $$$$\:\:\:\:=\mathrm{46},\mathrm{17}// \\ $$$$ \\ $$$$\left.\mathrm{3}\:\mathrm{b}\right).\:\mathrm{Mod}=\mathrm{L}_{\mathrm{i}} +\left(\frac{\delta_{\mathrm{1}} }{\delta_{\mathrm{1}} +\delta_{\mathrm{2}} }\right)×\mathrm{C} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{44},\mathrm{5}+\left(\frac{\left(\mathrm{12}−\mathrm{8}\right)}{\left(\mathrm{12}−\mathrm{8}\right)+\left(\mathrm{12}−\mathrm{6}\right)}\right)×\mathrm{5} \\ $$$$\:\:\:\:=\mathrm{44},\mathrm{5}+\left(\frac{\mathrm{4}×\mathrm{5}}{\mathrm{4}+\mathrm{6}}\right)=\mathrm{44},\mathrm{5}+\mathrm{2}=\mathrm{46},\mathrm{5}// \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *