Menu Close

Question-153769




Question Number 153769 by SANOGO last updated on 10/Sep/21
Answered by puissant last updated on 10/Sep/21
On remarque que z=0 est solution de   l′equation. supposons z≠0. En prenant  les modules, on a:  ∣z∣^5 =∣z^� ∣=∣z∣ ⇒ ∣z∣^6 =∣z∣^2 =1  d′ou ∣z∣^6 =1  alors z=e^((2ikπ)/6) =e^((ikπ)/3)  , k∈[∣0;5∣]  S_C ={0, 1, e^(i(π/3)) , e^(i((2π)/3)) , −1, e^(i((4π)/3)) , e^(i((5π)/3)) }  Alors on a 7 solutions...
$${On}\:{remarque}\:{que}\:{z}=\mathrm{0}\:{est}\:{solution}\:{de}\: \\ $$$${l}'{equation}.\:{supposons}\:{z}\neq\mathrm{0}.\:{En}\:{prenant} \\ $$$${les}\:{modules},\:{on}\:{a}: \\ $$$$\mid{z}\mid^{\mathrm{5}} =\mid\bar {{z}}\mid=\mid{z}\mid\:\Rightarrow\:\mid{z}\mid^{\mathrm{6}} =\mid{z}\mid^{\mathrm{2}} =\mathrm{1} \\ $$$${d}'{ou}\:\mid{z}\mid^{\mathrm{6}} =\mathrm{1} \\ $$$${alors}\:{z}={e}^{\frac{\mathrm{2}{ik}\pi}{\mathrm{6}}} ={e}^{\frac{{ik}\pi}{\mathrm{3}}} \:,\:{k}\in\left[\mid\mathrm{0};\mathrm{5}\mid\right] \\ $$$${S}_{\mathbb{C}} =\left\{\mathrm{0},\:\mathrm{1},\:{e}^{{i}\frac{\pi}{\mathrm{3}}} ,\:{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} ,\:−\mathrm{1},\:{e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} ,\:{e}^{{i}\frac{\mathrm{5}\pi}{\mathrm{3}}} \right\} \\ $$$${Alors}\:{on}\:{a}\:\mathrm{7}\:{solutions}… \\ $$
Commented by SANOGO last updated on 10/Sep/21
merci bien le dur
$${merci}\:{bien}\:{le}\:{dur} \\ $$
Commented by SLVR last updated on 11/Sep/21
why sirs...using...some other language  than english..  better to explain in english or  post.. in english. We are eager  to know...but we cannot follow  other than english..
$${why}\:{sirs}…{using}…{some}\:{other}\:{language} \\ $$$${than}\:{english}.. \\ $$$${better}\:{to}\:{explain}\:{in}\:{english}\:{or} \\ $$$${post}..\:{in}\:{english}.\:{We}\:{are}\:{eager} \\ $$$${to}\:{know}…{but}\:{we}\:{cannot}\:{follow} \\ $$$${other}\:{than}\:{english}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *