Menu Close

Question-153860




Question Number 153860 by SANOGO last updated on 11/Sep/21
Answered by puissant last updated on 11/Sep/21
Q=∫_0 ^π sin^(√3) x dx  =2∫_0 ^(π/2) sin^(√3) x dx  → I=2∫_0 ^(π/2) sin^(√3) x dx  posons  f(α)=∫_0 ^(π/2) sin^(α−1) x dx  ⇒ f(α)=(1/2)β((α/2);(1/2))=(((√π) Γ((α/2)))/(2Γ(((α+1)/2))))  pour α=(√3)+1, on a:  Q = 2×(((√π) Γ(((√3)/2)+(1/2)))/(2Γ(((√3)/2)+1)))..  ∴∵  Q=(((√π) Γ(((√3)/2)+(1/2)))/(Γ(((√3)/2)+1)))....              ..........Le puissant..........
$${Q}=\int_{\mathrm{0}} ^{\pi} {sin}^{\sqrt{\mathrm{3}}} {x}\:{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\sqrt{\mathrm{3}}} {x}\:{dx} \\ $$$$\rightarrow\:{I}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\sqrt{\mathrm{3}}} {x}\:{dx} \\ $$$${posons}\:\:{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\alpha−\mathrm{1}} {x}\:{dx} \\ $$$$\Rightarrow\:{f}\left(\alpha\right)=\frac{\mathrm{1}}{\mathrm{2}}\beta\left(\frac{\alpha}{\mathrm{2}};\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\sqrt{\pi}\:\Gamma\left(\frac{\alpha}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\alpha+\mathrm{1}}{\mathrm{2}}\right)} \\ $$$${pour}\:\alpha=\sqrt{\mathrm{3}}+\mathrm{1},\:{on}\:{a}: \\ $$$${Q}\:=\:\mathrm{2}×\frac{\sqrt{\pi}\:\Gamma\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{2}\Gamma\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\mathrm{1}\right)}.. \\ $$$$\therefore\because\:\:{Q}=\frac{\sqrt{\pi}\:\Gamma\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\mathrm{1}\right)}…. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:……….\mathscr{L}{e}\:{puissant}………. \\ $$
Commented by SANOGO last updated on 11/Sep/21
toujour le cerveau des cerveau merci
$${toujour}\:{le}\:{cerveau}\:{des}\:{cerveau}\:{merci} \\ $$
Commented by SANOGO last updated on 11/Sep/21
propre mon superieur
$${propre}\:{mon}\:{superieur} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *