Menu Close

Question-153901




Question Number 153901 by mr W last updated on 11/Sep/21
Commented by mr W last updated on 12/Sep/21
1) find (ab)_(max) =?  2) prove that S_1 =S_2 .
1)find(ab)max=?2)provethatS1=S2.
Answered by EDWIN88 last updated on 12/Sep/21
Commented by mr W last updated on 12/Sep/21
thanks alot sir!
thanksalotsir!
Commented by Tawa11 last updated on 12/Sep/21
Weldone sir.
Weldonesir.
Answered by mr W last updated on 12/Sep/21
Commented by mr W last updated on 12/Sep/21
(1)  α+β=45  ((tan α+tan α)/(1−tan α tan β))=1  (1/(tan α))+(1/(tan β))=(1/(tan α))×(1/(tan β))−1  ⇒(1/(tan β))=(((1/(tan α))+1)/((1/(tan α))−1))    ((sin (α+45))/(sin α))=(l/a)  (1/(tan α))+1=(((√2)l)/a)   ...(i)  similarly  (1/(tan β))+1=(((√2)l)/b)   ...(ii)  ((2l^2 )/(ab))=((1/(tan α))+1)((1/(tan β))+1)  =2((1/(tan α))+1)(((1/(tan α))/((1/(tan α))−1)))  let t=(1/(tan α))  ⇒P=(l^2 /(ab))=((t(t+1))/(t−1))  (dP/dt)=((2t+1)/(t−1))−((t(t+1))/((t−1)^2 ))=0  t^2 −2t−1=0  ⇒t=(1/(tan α))=1+(√2)  ⇒tan α=(√2)−1 ⇒α=22.5°=β  ⇒tan β=(√2)−1  ((2l^2 )/((ab)_(max) ))=(2+(√2))^2   ⇒(ab)_(max) =((√2)−1)^2 l^2 ≈0.171l^2
(1)α+β=45tanα+tanα1tanαtanβ=11tanα+1tanβ=1tanα×1tanβ11tanβ=1tanα+11tanα1sin(α+45)sinα=la1tanα+1=2la(i)similarly1tanβ+1=2lb(ii)2l2ab=(1tanα+1)(1tanβ+1)=2(1tanα+1)(1tanα1tanα1)lett=1tanαP=l2ab=t(t+1)t1dPdt=2t+1t1t(t+1)(t1)2=0t22t1=0t=1tanα=1+2tanα=21α=22.5°=βtanβ=212l2(ab)max=(2+2)2(ab)max=(21)2l20.171l2
Commented by mr W last updated on 12/Sep/21
(2)  (L/c)=((sin (45+α))/(sin 45))=((sin (45+45−β))/(sin 45))=(√2)cos β  (L/d)=((sin (45+β))/(sin 45))=((sin (45+45−α))/(sin 45))=(√2)cos α  (L^2 /(cd))=2 cos α cos β  ⇒cd=(L^2 /(2cos α cos β))  e=(L/(cos α))  f=(L/(cos β))  ⇒ef=(L^2 /(cos α cos β))=2cd  S_1 =((cd sin 45°)/2)  S_1 +S_2 =((ef sin 45°)/2)=2S_1   ⇒S_1 =S_2
(2)Lc=sin(45+α)sin45=sin(45+45β)sin45=2cosβLd=sin(45+β)sin45=sin(45+45α)sin45=2cosαL2cd=2cosαcosβcd=L22cosαcosβe=Lcosαf=Lcosβef=L2cosαcosβ=2cdS1=cdsin45°2S1+S2=efsin45°2=2S1S1=S2
Commented by liberty last updated on 12/Sep/21

Leave a Reply

Your email address will not be published. Required fields are marked *