Menu Close

Question-154177




Question Number 154177 by EDWIN88 last updated on 15/Sep/21
Commented by Tawa11 last updated on 15/Sep/21
nice
$$\mathrm{nice} \\ $$
Commented by EDWIN88 last updated on 16/Sep/21
Ptolomeo :  ⇒AB.CD+CD^2 sin αsin θ =CD^2 cos α cos θ  ⇒AB=CD(cos α cos θ−sin α sin θ)  ⇒AB=CD cos (α+θ)
$${Ptolomeo}\:: \\ $$$$\Rightarrow{AB}.{CD}+{CD}^{\mathrm{2}} \mathrm{sin}\:\alpha\mathrm{sin}\:\theta\:={CD}^{\mathrm{2}} \mathrm{cos}\:\alpha\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{AB}={CD}\left(\mathrm{cos}\:\alpha\:\mathrm{cos}\:\theta−\mathrm{sin}\:\alpha\:\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{AB}={CD}\:\mathrm{cos}\:\left(\alpha+\theta\right) \\ $$
Answered by som(math1967) last updated on 15/Sep/21
Commented by som(math1967) last updated on 15/Sep/21
let o is centre ∴CO=AO=BO=((CD)/2)  ∡BCO=∡OBC=𝛉  [CO=BO]  ∴∡ABO=∡BAO=𝛂+𝛉  ∡AOB=180−2(𝛂+𝛉)  from △AOB    ((AB)/(Sin(180−2𝛂−2θ)))=((AO)/(Sin(𝛂+𝛉)))  ((AB)/(Sin2(𝛂+𝛉)))=((AO)/(sin(𝛂+𝛉)))  ((AB)/(2sin(𝛂+θ)cos(𝛂+𝛉)))=((AO)/(sin(𝛂+𝛉)))  AB=2AOcos(𝛂+𝛉)  AB=CDcos(𝛂+𝛉)   [proved]
$$\boldsymbol{{let}}\:\boldsymbol{{o}}\:\boldsymbol{{is}}\:\boldsymbol{{centre}}\:\therefore\boldsymbol{{CO}}=\boldsymbol{{AO}}=\boldsymbol{{BO}}=\frac{\boldsymbol{{CD}}}{\mathrm{2}} \\ $$$$\measuredangle\boldsymbol{{BCO}}=\measuredangle\boldsymbol{{OBC}}=\boldsymbol{\theta}\:\:\left[\boldsymbol{{CO}}=\boldsymbol{{BO}}\right] \\ $$$$\therefore\measuredangle\boldsymbol{{ABO}}=\measuredangle\boldsymbol{{B}}{AO}=\boldsymbol{\alpha}+\boldsymbol{\theta} \\ $$$$\measuredangle\boldsymbol{{AOB}}=\mathrm{180}−\mathrm{2}\left(\boldsymbol{\alpha}+\boldsymbol{\theta}\right) \\ $$$$\boldsymbol{{from}}\:\bigtriangleup\boldsymbol{{AOB}} \\ $$$$\:\:\frac{\boldsymbol{{AB}}}{\boldsymbol{{Sin}}\left(\mathrm{180}−\mathrm{2}\boldsymbol{\alpha}−\mathrm{2}\theta\right)}=\frac{\boldsymbol{{AO}}}{\boldsymbol{{Sin}}\left(\boldsymbol{\alpha}+\boldsymbol{\theta}\right)} \\ $$$$\frac{\boldsymbol{{AB}}}{\boldsymbol{{Sin}}\mathrm{2}\left(\boldsymbol{\alpha}+\boldsymbol{\theta}\right)}=\frac{\boldsymbol{{AO}}}{\boldsymbol{{sin}}\left(\boldsymbol{\alpha}+\boldsymbol{\theta}\right)} \\ $$$$\frac{\boldsymbol{{A}}{B}}{\mathrm{2}\boldsymbol{{sin}}\left(\boldsymbol{\alpha}+\theta\right){c}\boldsymbol{{os}}\left(\boldsymbol{\alpha}+\boldsymbol{\theta}\right)}=\frac{\boldsymbol{{A}}{O}}{\boldsymbol{{sin}}\left(\boldsymbol{\alpha}+\boldsymbol{\theta}\right)} \\ $$$$\boldsymbol{{AB}}=\mathrm{2}\boldsymbol{{AOcos}}\left(\boldsymbol{\alpha}+\boldsymbol{\theta}\right) \\ $$$$\boldsymbol{{AB}}=\boldsymbol{{CDcos}}\left(\boldsymbol{\alpha}+\boldsymbol{\theta}\right)\:\:\:\left[\boldsymbol{{proved}}\right] \\ $$
Commented by mr W last updated on 15/Sep/21
OA=OB=((CD)/2)  AB=2×OB cos (θ+α)=CD cos (θ+α)
$${OA}={OB}=\frac{{CD}}{\mathrm{2}} \\ $$$${AB}=\mathrm{2}×{OB}\:\mathrm{cos}\:\left(\theta+\alpha\right)={CD}\:\mathrm{cos}\:\left(\theta+\alpha\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *