Menu Close

Question-15440




Question Number 15440 by mrW1 last updated on 10/Jun/17
Commented by mrW1 last updated on 10/Jun/17
The sides of a convex quadrilateral  ABCD are elongated 2 times in one  direction, see diagram, to form a new  quadrilateral EFGH. What is the  area of the new quadrilateral if the  area of ABCD is 1.  What is the result, if the sides will be  elongated n times?
ThesidesofaconvexquadrilateralABCDareelongated2timesinonedirection,seediagram,toformanewquadrilateralEFGH.WhatistheareaofthenewquadrilateraliftheareaofABCDis1.Whatistheresult,ifthesideswillbeelongatedntimes?
Commented by ajfour last updated on 10/Jun/17
n^2 +n+1  is it correct sir ?
n2+n+1isitcorrectsir?
Commented by mrW1 last updated on 10/Jun/17
no, this is not correct.
no,thisisnotcorrect.
Commented by ajfour last updated on 10/Jun/17
Commented by ajfour last updated on 10/Jun/17
Expression for Area of original  quadrilateral:  let area of original quadrilateral  be A_0 . Then  2A_0 =(1/2)(absin β+bcsin γ+cdsin δ                                 +dasin α )  ⇒ 2A_0 =(1/2)Σabsin β   or   Σabsin β=4A_0  .      This is used in next figure  wberein the solution is continued...
ExpressionforAreaoforiginalquadrilateral:letareaoforiginalquadrilateralbeA0.Then2A0=12(absinβ+bcsinγ+cdsinδ+dasinα)2A0=12ΣabsinβorΣabsinβ=4A0.Thisisusedinnextfigurewbereinthesolutioniscontinued
Commented by ajfour last updated on 10/Jun/17
Commented by ajfour last updated on 10/Jun/17
let area of new quadrilateral  be S.   S=A_0 +(1/2)[ na(n+1)bsin β           +nb(n+1)csin γ            +nc(n+1)dsin δ            +nd(n+1)asin α ]  ⇒ S=A_0 +((n(n+1))/2) Σabsin β  it has been found in previous  comment that Σabsin β=4A_0  ,  therefore               S=A_0 +((n(n+1))/2)(4A_0 )              S=A_0 (1+2n^2 +2n)      or    (S/A_0 ) =2n^2 +2n+1 .
letareaofnewquadrilateralbeS.S=A0+12[na(n+1)bsinβ+nb(n+1)csinγ+nc(n+1)dsinδ+nd(n+1)asinα]S=A0+n(n+1)2ΣabsinβithasbeenfoundinpreviouscommentthatΣabsinβ=4A0,thereforeS=A0+n(n+1)2(4A0)S=A0(1+2n2+2n)orSA0=2n2+2n+1.
Commented by mrW1 last updated on 10/Jun/17
Answer 2n^2 +2n+1 is correct!
Answer2n2+2n+1iscorrect!
Commented by ajfour last updated on 10/Jun/17
with  n=2 ,  (S/A_0 ) = 13 .
withn=2,SA0=13.
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 11/Jun/17
∡ADC=α,∡ABC=β,∡DCB=θ,∡DAB=δ  AB=a,BC=b,CD=c,DA=d  S_(ABCD) =(1/2)dc.sinα+(1/2)ab.sinβ=S_1   S_(ABCD) =(1/2)bc.sinθ+(1/2)da.sinδ=S_1   S_1 +(1/2).2b.3c.sin(π−θ)+(1/2).2c.3d.sin(π−α)+  +(1/2).2d.3a.sin(π−δ)+(1/2).2a.3b.sin(π−β)=S  S_1 +6×((1/2)bc.sinθ+(1/2)dasinδ)+  +6×((1/2)cd.sinα+(1/2)absinβ)=S  ⇒S_1 +6S_1 +6S_1 =S⇒13S_1 =S . ■
ADC=α,ABC=β,DCB=θ,DAB=δAB=a,BC=b,CD=c,DA=dSABCD=12dc.sinα+12ab.sinβ=S1SABCD=12bc.sinθ+12da.sinδ=S1S1+12.2b.3c.sin(πθ)+12.2c.3d.sin(πα)++12.2d.3a.sin(πδ)+12.2a.3b.sin(πβ)=SS1+6×(12bc.sinθ+12dasinδ)++6×(12cd.sinα+12absinβ)=SS1+6S1+6S1=S13S1=S.◼
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 11/Jun/17
in case of: n  S_1 +2n(n+1)S_1 =S  ⇒(S/S_1 )=2n^2 +2n+1 .■
incaseof:nS1+2n(n+1)S1=SSS1=2n2+2n+1.◼
Commented by mrW1 last updated on 11/Jun/17
That′s right.
Thatsright.
Answered by mrW1 last updated on 11/Jun/17
I have an other  solution without using  trigonometry and analytic geometry:    A_(ΔBCF) =nA_(ΔACB)   A_(ΔBGF) =(n+1)A_(ΔBCF) =(n+1)nA_(ΔACB)     similarly  A_(ΔDEH) =(n+1)nA_(ΔACD)     ⇒A_(ΔBGF) +A_(ΔDEH) =(n+1)n(A_(ΔACB) +A_(ΔACD) )=(n+1)nA_(ABCD)     similarly  ⇒A_(ΔCHG) +A_(ΔAFE) =(n+1)n(A_(ΔCDB) +A_(ΔADB) )=(n+1)nA_(ABCD)     A_(EFGH) =A_(ΔBGF) +A_(ΔDEH) +A_(ΔBGF) +A_(ΔDEH) +A_(ABCD)   =2(n+1)nA_(ABCD) +A_(ABCD)   =[2n(n+1)+1]A_(ABCD)   =2n(n+1)+1  =2n^2 +2n+1
Ihaveanothersolutionwithoutusingtrigonometryandanalyticgeometry:AΔBCF=nAΔACBAΔBGF=(n+1)AΔBCF=(n+1)nAΔACBsimilarlyAΔDEH=(n+1)nAΔACDAΔBGF+AΔDEH=(n+1)n(AΔACB+AΔACD)=(n+1)nAABCDsimilarlyAΔCHG+AΔAFE=(n+1)n(AΔCDB+AΔADB)=(n+1)nAABCDAEFGH=AΔBGF+AΔDEH+AΔBGF+AΔDEH+AABCD=2(n+1)nAABCD+AABCD=[2n(n+1)+1]AABCD=2n(n+1)+1=2n2+2n+1
Commented by mrW1 last updated on 11/Jun/17
Commented by b.e.h.i.8.3.4.1.7@gmail.com last updated on 11/Jun/17
nice & smart. but: n^2 +2n+1 (or 2)?
nice&smart.but:n2+2n+1(or2)?
Commented by mrW1 last updated on 11/Jun/17
thank you! 2n^2 +2n+1 is correct.
thankyou!2n2+2n+1iscorrect.

Leave a Reply

Your email address will not be published. Required fields are marked *