Question Number 154661 by physicstutes last updated on 20/Sep/21

Answered by mr W last updated on 20/Sep/21
![x=d cos φ=v_i cos θ_i t ...(1) y=d sin φ=v_i sin θ_i t−(1/2)gt^2 ...(2) from (1): t=((d cos φ)/(v_i cos θ_i )) put this into (2): d sin φ=v_i sin θ_i ×((d cos φ)/(v_i cos θ_i ))−(1/2)g(((d cos φ)/(v_i cos θ_i )))^2 sin φ=sin θ_i ×(( cos φ)/(cos θ_i ))−((gd)/(2v_i ^2 ))×((cos^2 φ)/(cos^2 θ_i )) ((gd)/(2v_i ^2 ))×((cos^2 φ)/(cos θ_i ))=sin θ_i cos φ−cos θ_i sin φ ((gd)/(2v_i ^2 ))×((cos^2 φ)/(cos θ_i ))=sin (θ_i −φ) d=((2v_i ^2 cos θ_i sin (θ_i −φ))/(g cos^2 φ)) (d/dθ_i )(((gd cos^2 φ)/(2v_i ^2 )))=(d/dθ_i )[cos θ_i sin (θ_i −φ)]=0 −sin θ_i sin (θ_i −φ)+cos θ_i cos (θ_i −φ)=0 cos (2θ_i −φ)=0 ⇒2θ_i −φ=(π/2) ⇒θ_i =(π/4)+(φ/2) d_(max) =((2v_i ^2 cos ((π/4)+(φ/2)) sin ((π/4)−(φ/2)))/(g cos^2 φ)) d_(max) =((v_i ^2 (cos (φ/2)−sin (φ/2))^2 )/(g cos^2 φ)) d_(max) =((v_i ^2 (1−sin φ))/(g cos^2 φ)) d_(max) =((v_i ^2 (1−sin φ))/(g(1−sin^2 φ))) ⇒d_(max) =(v_i ^2 /(g(1+sin φ)))](https://www.tinkutara.com/question/Q154715.png)
Commented by mathdanisur last updated on 21/Sep/21

Commented by physicstutes last updated on 21/Sep/21

Commented by Tawa11 last updated on 21/Sep/21
