Menu Close

Question-154661




Question Number 154661 by physicstutes last updated on 20/Sep/21
Answered by mr W last updated on 20/Sep/21
x=d cos φ=v_i cos θ_i t   ...(1)  y=d sin φ=v_i sin θ_i t−(1/2)gt^2    ...(2)  from (1):  t=((d cos φ)/(v_i  cos θ_i ))  put this into (2):  d sin φ=v_i sin θ_i ×((d cos φ)/(v_i  cos θ_i ))−(1/2)g(((d cos φ)/(v_i  cos θ_i )))^2   sin φ=sin θ_i ×(( cos φ)/(cos θ_i ))−((gd)/(2v_i ^2 ))×((cos^2  φ)/(cos^2  θ_i ))  ((gd)/(2v_i ^2 ))×((cos^2  φ)/(cos θ_i ))=sin θ_i  cos φ−cos θ_i sin φ  ((gd)/(2v_i ^2 ))×((cos^2  φ)/(cos θ_i ))=sin (θ_i −φ)  d=((2v_i ^2 cos θ_i  sin (θ_i −φ))/(g cos^2  φ))    (d/dθ_i )(((gd cos^2  φ)/(2v_i ^2 )))=(d/dθ_i )[cos θ_i  sin (θ_i −φ)]=0  −sin θ_i sin (θ_i −φ)+cos θ_i cos (θ_i −φ)=0  cos (2θ_i −φ)=0  ⇒2θ_i −φ=(π/2)  ⇒θ_i =(π/4)+(φ/2)  d_(max) =((2v_i ^2 cos ((π/4)+(φ/2)) sin ((π/4)−(φ/2)))/(g cos^2  φ))  d_(max) =((v_i ^2 (cos (φ/2)−sin (φ/2))^2 )/(g cos^2  φ))  d_(max) =((v_i ^2 (1−sin φ))/(g cos^2  φ))  d_(max) =((v_i ^2 (1−sin φ))/(g(1−sin^2  φ)))  ⇒d_(max) =(v_i ^2 /(g(1+sin φ)))
x=dcosϕ=vicosθit(1)y=dsinϕ=visinθit12gt2(2)from(1):t=dcosϕvicosθiputthisinto(2):dsinϕ=visinθi×dcosϕvicosθi12g(dcosϕvicosθi)2sinϕ=sinθi×cosϕcosθigd2vi2×cos2ϕcos2θigd2vi2×cos2ϕcosθi=sinθicosϕcosθisinϕgd2vi2×cos2ϕcosθi=sin(θiϕ)d=2vi2cosθisin(θiϕ)gcos2ϕddθi(gdcos2ϕ2vi2)=ddθi[cosθisin(θiϕ)]=0sinθisin(θiϕ)+cosθicos(θiϕ)=0cos(2θiϕ)=02θiϕ=π2θi=π4+ϕ2dmax=2vi2cos(π4+ϕ2)sin(π4ϕ2)gcos2ϕdmax=vi2(cosϕ2sinϕ2)2gcos2ϕdmax=vi2(1sinϕ)gcos2ϕdmax=vi2(1sinϕ)g(1sin2ϕ)dmax=vi2g(1+sinϕ)
Commented by mathdanisur last updated on 21/Sep/21
Very nice Ser thankyou
VeryniceSerthankyou
Commented by physicstutes last updated on 21/Sep/21
+brilliant+
+brilliant+
Commented by Tawa11 last updated on 21/Sep/21
Weldone sir
Weldonesir

Leave a Reply

Your email address will not be published. Required fields are marked *