Menu Close

Question-154748




Question Number 154748 by imjagoll last updated on 21/Sep/21
Answered by ARUNG_Brandon_MBU last updated on 21/Sep/21
sin(3log_((2sinx)) (π)^(1/3) )=(1/2) ⇒log_((2sinx)) π=(π/6)  ⇒log_π (2sinx)=(6/π) ⇒sinx=(1/2)π^(6/π)   ⇒x=arcsin((1/2)π^(6/π) )
$$\mathrm{sin}\left(\mathrm{3log}_{\left(\mathrm{2sin}{x}\right)} \sqrt[{\mathrm{3}}]{\pi}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow\mathrm{log}_{\left(\mathrm{2sin}{x}\right)} \pi=\frac{\pi}{\mathrm{6}} \\ $$$$\Rightarrow\mathrm{log}_{\pi} \left(\mathrm{2sin}{x}\right)=\frac{\mathrm{6}}{\pi}\:\Rightarrow\mathrm{sin}{x}=\frac{\mathrm{1}}{\mathrm{2}}\pi^{\frac{\mathrm{6}}{\pi}} \\ $$$$\Rightarrow{x}=\mathrm{arcsin}\left(\frac{\mathrm{1}}{\mathrm{2}}\pi^{\frac{\mathrm{6}}{\pi}} \right) \\ $$
Commented by mathdanisur last updated on 21/Sep/21
and  x=π-arcsin((1/2) π^(6/𝛑) )+2πn
$$\mathrm{and}\:\:\mathrm{x}=\pi-\mathrm{arcsin}\left(\frac{\mathrm{1}}{\mathrm{2}}\:\pi^{\frac{\mathrm{6}}{\boldsymbol{\pi}}} \right)+\mathrm{2}\pi{n} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *