Menu Close

Question-155183




Question Number 155183 by mathdanisur last updated on 26/Sep/21
Answered by aleks041103 last updated on 26/Sep/21
1−tan^2 (x/2^k )=((cos^2 (x/2^k )−sin^2 (x/2^k ))/(cos^2 (x/2^k )))=((cos(x/2^(k−1) ))/(cos^2 (x/2^k )))  Π_(k=1) ^n cos(x/2^(k−1) )=cosx cos(x/2) ... cos(x/2^(n−1) )=  =(1/(sin(x/2^(n−1) )))sin(x/2^(n−1) )cos(x/2^(n−1) )cos(x/2^(n−2) )...cos(x/2)cosx=  =(1/(sin(x/2^(n−1) ))) (1/2)sin(x/2^(n−2) )cos(x/2^(n−2) )...cos(x/2)cosx=  =(1/(2^2 sin(x/2^(n−1) )))sin(x/2^(n−3) )Π_(k=0) ^(n−3) cos(x/2^k )=...=  =(1/(2^m sin(x/2^(n−1) )))sin(x/2^(n−1−m) )Π_(k=0) ^(n−1−m) cos(x/2^k )=  =(1/(2^(n−1) sin(x/2^(n−1) )))sinxcosx=((sin(2x))/(2^n sin((x/2^(n−1) ))))  Π_(k=1) ^n cos(x/2^k )=Π_(k=1) ^n cos((x/2)/2^(k−1) )=  =((sin(2(x/2)))/(2^n sin(((x/2)/2^(n−1) ))))=((sinx)/(2^n sin(x/2^n )))  ⇒Π_(k=1) ^n ((cos(x/2^(k−1) ))/(cos^2 (x/2^k )))=(((Π_(k=1) ^n cos(x/2^(k−1) )))/((Π_(k=1) ^n cos(x/2^k ))^2 ))=  =(((sin(2x))/(2^n sin((x/2^(n−1) ))))/((((sinx)/(2^n sin(x/2^n ))))^2 ))=((sin(2x)2^(2n) sin^2 (x/2^n ))/(2^n sin((2x)/2^n )sin^2 x))=  =((2sinx cosx 2^n  sin^2 (x/2^n ))/(2sin(x/2^n )cos(x/2^n )sin^2 x))=((2^n cosx sin(x/2^n ))/(cos(x/2^n )sinx))=  =2^n ((tan((x/2^n )))/(tan(x)))  ⇒Ω=lim_(x→0)  (x/(tan(x)))lim_(n→∞) ((tan(x/2^n ))/(x/2^n ))=1
1tan2x2k=cos2x2ksin2x2kcos2x2k=cosx2k1cos2x2knk=1cosx2k1=cosxcosx2cosx2n1==1sinx2n1sinx2n1cosx2n1cosx2n2cosx2cosx==1sinx2n112sinx2n2cosx2n2cosx2cosx==122sinx2n1sinx2n3n3k=0cosx2k===12msinx2n1sinx2n1mn1mk=0cosx2k==12n1sinx2n1sinxcosx=sin(2x)2nsin(x2n1)nk=1cosx2k=nk=1cosx/22k1==sin(2(x/2))2nsin(x/22n1)=sinx2nsinx2nnk=1cosx2k1cos2x2k=(nk=1cosx2k1)(nk=1cosx2k)2==sin(2x)2nsin(x2n1)(sinx2nsinx2n)2=sin(2x)22nsin2x2n2nsin2x2nsin2x==2sinxcosx2nsin2x2n2sinx2ncosx2nsin2x=2ncosxsinx2ncosx2nsinx==2ntan(x2n)tan(x)Ω=limx0xtan(x)limntan(x/2n)x/2n=1
Commented by aleks041103 last updated on 26/Sep/21
There is an even easier method  tan(2x)=((2tan(x))/(1−tan^2 (x)))⇒1−tan^2 x=2((tan(x))/(tan(2x)))  ⇒Π_(k=1) ^n (1−tan^2 (x/2^k ))=2^n Π_(k=1) ^n ((tan((x/2^k )))/(tan((x/2^(k−1) ))))  telescopic sum:  ⇒Π_(k=1) ^n (1−tan^2 (x/2^k ))=((2^n tan(2^(−n) x))/(tan(x)))  ...  ⇒Ω=1
Thereisaneveneasiermethodtan(2x)=2tan(x)1tan2(x)1tan2x=2tan(x)tan(2x)nk=1(1tan2x2k)=2nnk=1tan(x2k)tan(x2k1)telescopicsum:nk=1(1tan2x2k)=2ntan(2nx)tan(x)Ω=1
Commented by mathdanisur last updated on 26/Sep/21
Very nice Ser, thank you
Verynice\boldsymbolSer,thankyouVeryniceSer,thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *