Question-155183 Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 155183 by mathdanisur last updated on 26/Sep/21 Answered by aleks041103 last updated on 26/Sep/21 1−tan2x2k=cos2x2k−sin2x2kcos2x2k=cosx2k−1cos2x2k∏nk=1cosx2k−1=cosxcosx2…cosx2n−1==1sinx2n−1sinx2n−1cosx2n−1cosx2n−2…cosx2cosx==1sinx2n−112sinx2n−2cosx2n−2…cosx2cosx==122sinx2n−1sinx2n−3∏n−3k=0cosx2k=…==12msinx2n−1sinx2n−1−m∏n−1−mk=0cosx2k==12n−1sinx2n−1sinxcosx=sin(2x)2nsin(x2n−1)∏nk=1cosx2k=∏nk=1cosx/22k−1==sin(2(x/2))2nsin(x/22n−1)=sinx2nsinx2n⇒∏nk=1cosx2k−1cos2x2k=(∏nk=1cosx2k−1)(∏nk=1cosx2k)2==sin(2x)2nsin(x2n−1)(sinx2nsinx2n)2=sin(2x)22nsin2x2n2nsin2x2nsin2x==2sinxcosx2nsin2x2n2sinx2ncosx2nsin2x=2ncosxsinx2ncosx2nsinx==2ntan(x2n)tan(x)⇒Ω=limx→0xtan(x)limn→∞tan(x/2n)x/2n=1 Commented by aleks041103 last updated on 26/Sep/21 Thereisaneveneasiermethodtan(2x)=2tan(x)1−tan2(x)⇒1−tan2x=2tan(x)tan(2x)⇒∏nk=1(1−tan2x2k)=2n∏nk=1tan(x2k)tan(x2k−1)telescopicsum:⇒∏nk=1(1−tan2x2k)=2ntan(2−nx)tan(x)…⇒Ω=1 Commented by mathdanisur last updated on 26/Sep/21 Verynice\boldsymbolSer,thankyouVeryniceSer,thankyou Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Find-n-if-133-5-110-5-84-5-27-5-n-5-Next Next post: Question-89647 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.