Question Number 155382 by MathsFan last updated on 29/Sep/21

Answered by puissant last updated on 29/Sep/21
![Q=∫_0 ^(10) (√(x+(√(x+(√(x+(√(x+...))))))))dx u=(√(x+(√(x+(√(x+(√(x+....))))))))→u^2 =x+(√(x+(√(x+(√(x+....)))))) ⇒ u^2 −u=x ⇒ u−u+(1/4)=x+(1/4) ⇒ (u−(1/2))^2 =x+(1/4) ⇒ u=(1/2)+(√((4x+1)/4)) Q=∫_0 ^(10) ((1/2)+(1/2)(√(4x+1)))dx=(1/2)∫_0 ^(10) (1+(√(4x+1)))dx =(1/2)[x+(2/3)×(1/4)(√((4x+1)^3 ))]_0 ^(10) =(1/2)[x+(1/6)(√((4x+1)^3 ))]_0 ^(10) =(1/2)[(10+((√(68921))/6))−(0+(1/6))] ∴ ∵ Q= (1/(12))(59+2(√(68921))).. ..............Le puissant...............](https://www.tinkutara.com/question/Q155387.png)
Commented by SANOGO last updated on 30/Sep/21

Commented by MathsFan last updated on 30/Sep/21

Commented by peter frank last updated on 01/Oct/21
