Menu Close

Question-155382




Question Number 155382 by MathsFan last updated on 29/Sep/21
Answered by puissant last updated on 29/Sep/21
Q=∫_0 ^(10) (√(x+(√(x+(√(x+(√(x+...))))))))dx  u=(√(x+(√(x+(√(x+(√(x+....))))))))→u^2 =x+(√(x+(√(x+(√(x+....))))))  ⇒ u^2 −u=x ⇒ u−u+(1/4)=x+(1/4)  ⇒ (u−(1/2))^2 =x+(1/4) ⇒ u=(1/2)+(√((4x+1)/4))  Q=∫_0 ^(10) ((1/2)+(1/2)(√(4x+1)))dx=(1/2)∫_0 ^(10) (1+(√(4x+1)))dx  =(1/2)[x+(2/3)×(1/4)(√((4x+1)^3 ))]_0 ^(10) =(1/2)[x+(1/6)(√((4x+1)^3 ))]_0 ^(10)   =(1/2)[(10+((√(68921))/6))−(0+(1/6))]          ∴ ∵       Q= (1/(12))(59+2(√(68921)))..                          ..............Le puissant...............
Q=010x+x+x+x+dxu=x+x+x+x+.u2=x+x+x+x+.u2u=xuu+14=x+14(u12)2=x+14u=12+4x+14Q=010(12+124x+1)dx=12010(1+4x+1)dx=12[x+23×14(4x+1)3]010=12[x+16(4x+1)3]010=12[(10+689216)(0+16)]Q=112(59+268921)....Lepuissant
Commented by SANOGO last updated on 30/Sep/21
le dur gar
ledurgar
Commented by MathsFan last updated on 30/Sep/21
correct sir
correctsir
Commented by peter frank last updated on 01/Oct/21
good
good

Leave a Reply

Your email address will not be published. Required fields are marked *