Menu Close

Question-155497




Question Number 155497 by VIDDD last updated on 01/Oct/21
Answered by amin96 last updated on 01/Oct/21
(√(4−(1/(3(√2)))(√(4−(1/(3(√2)))…))))=x    (√(4−(1/(3(√2)))x))=x   ⇒   x^2 =4−(x/(3(√2)))  ⇒  3x^2 (√2)+x−12(√2)=0  𝚫=289     x=((−1+17)/(6(√2)))=(8/(3(√2)))  A=10+log_(3/2) ((1/(3(√2)))×(8/(3(√2))))=10+log_(3/2) (4/9)=  =10+2log_(3/2) (2/3)  =10+2log_(3/2) ((3/2))^(−1) =10−2=8
$$\sqrt{\mathrm{4}−\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\underbrace{\sqrt{\mathrm{4}−\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\ldots}}}=\boldsymbol{\mathrm{x}}\:\: \\ $$$$\sqrt{\mathrm{4}−\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}\boldsymbol{\mathrm{x}}}=\boldsymbol{\mathrm{x}}\:\:\:\Rightarrow\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} =\mathrm{4}−\frac{\boldsymbol{\mathrm{x}}}{\mathrm{3}\sqrt{\mathrm{2}}}\:\:\Rightarrow\:\:\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{2}} \sqrt{\mathrm{2}}+\boldsymbol{\mathrm{x}}−\mathrm{12}\sqrt{\mathrm{2}}=\mathrm{0} \\ $$$$\boldsymbol{\Delta}=\mathrm{289}\:\:\:\:\:\boldsymbol{\mathrm{x}}=\frac{−\mathrm{1}+\mathrm{17}}{\mathrm{6}\sqrt{\mathrm{2}}}=\frac{\mathrm{8}}{\mathrm{3}\sqrt{\mathrm{2}}} \\ $$$$\boldsymbol{\mathrm{A}}=\mathrm{10}+\boldsymbol{\mathrm{log}}_{\frac{\mathrm{3}}{\mathrm{2}}} \left(\frac{\mathrm{1}}{\mathrm{3}\sqrt{\mathrm{2}}}×\frac{\mathrm{8}}{\mathrm{3}\sqrt{\mathrm{2}}}\right)=\mathrm{10}+\boldsymbol{\mathrm{log}}_{\frac{\mathrm{3}}{\mathrm{2}}} \frac{\mathrm{4}}{\mathrm{9}}= \\ $$$$=\mathrm{10}+\mathrm{2}\boldsymbol{\mathrm{log}}_{\frac{\mathrm{3}}{\mathrm{2}}} \frac{\mathrm{2}}{\mathrm{3}}\:\:=\mathrm{10}+\mathrm{2}\boldsymbol{\mathrm{log}}_{\frac{\mathrm{3}}{\mathrm{2}}} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{−\mathrm{1}} =\mathrm{10}−\mathrm{2}=\mathrm{8} \\ $$
Commented by puissant last updated on 01/Oct/21
Nice Sir really great...
$${Nice}\:{Sir}\:{really}\:{great}… \\ $$
Commented by VIDDD last updated on 01/Oct/21
great sir ,thanks
$${great}\:{sir}\:,{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *