Menu Close

Question-155510




Question Number 155510 by VIDDD last updated on 01/Oct/21
Answered by puissant last updated on 04/Oct/21
 I=(√(log_(√2) (√((√2)×2^(1/4) ))+ log_(2)^(1/4)  (2^(3/4) )^(1/4) ))  ⇒ I=(√(log_(√2) 2^(3/8) + log_(2)^(1/4)  2^(3/(16)) ))  ⇒ I=(√((((3/8)ln2)/((1/2)ln2))+(((3/(16))ln2)/((1/4)ln2))))  ⇒ I=(√((3/4)+(3/4))) = (√(6/4)) = (√(3/2))            ∴∵  I = (1/2)(√6)...
$$\:{I}=\sqrt{{log}_{\sqrt{\mathrm{2}}} \sqrt{\sqrt{\mathrm{2}}×\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{4}}} }+\:{log}_{\sqrt[{\mathrm{4}}]{\mathrm{2}}} \sqrt[{\mathrm{4}}]{\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{4}}} }} \\ $$$$\Rightarrow\:{I}=\sqrt{{log}_{\sqrt{\mathrm{2}}} \mathrm{2}^{\frac{\mathrm{3}}{\mathrm{8}}} +\:{log}_{\sqrt[{\mathrm{4}}]{\mathrm{2}}} \mathrm{2}^{\frac{\mathrm{3}}{\mathrm{16}}} } \\ $$$$\Rightarrow\:{I}=\sqrt{\frac{\frac{\mathrm{3}}{\mathrm{8}}{ln}\mathrm{2}}{\frac{\mathrm{1}}{\mathrm{2}}{ln}\mathrm{2}}+\frac{\frac{\mathrm{3}}{\mathrm{16}}{ln}\mathrm{2}}{\frac{\mathrm{1}}{\mathrm{4}}{ln}\mathrm{2}}} \\ $$$$\Rightarrow\:{I}=\sqrt{\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}}\:=\:\sqrt{\frac{\mathrm{6}}{\mathrm{4}}}\:=\:\sqrt{\frac{\mathrm{3}}{\mathrm{2}}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\therefore\because\:\:{I}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{6}}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *