Menu Close

Question-155594




Question Number 155594 by mathdanisur last updated on 02/Oct/21
Answered by ghimisi last updated on 02/Oct/21
⇔Σ((√(x^4 +y^4 ))−x^2 −y^2 +(2−(√2))xy)≥0  (√(x^4 +y^4 ))−x^2 −y^2 +(2−(√2))xy≥0⇔  (2−(√2))xy≥x^2 +y^2 −(√(x^4 +y^4 ))⇔  (2−(√2))xy≥((2x^2 y^2 )/(x^2 +y^2 +(√(x^4 +y^4 ))))⇔x^2 +y^2 +(√(x^4 +y^4 ))≥(2+(√2))xy (•)  x^2 +y^2 ≥2xy   (1)  (√(x^4 +y^4 ))≥(√(2x^2 y^2 ))=xy(√2)  (2)  (1)+(2)⇒(•)
$$\Leftrightarrow\Sigma\left(\sqrt{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} +\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){xy}\right)\geqslant\mathrm{0} \\ $$$$\sqrt{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} +\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){xy}\geqslant\mathrm{0}\Leftrightarrow \\ $$$$\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){xy}\geqslant{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\sqrt{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }\Leftrightarrow \\ $$$$\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){xy}\geqslant\frac{\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\sqrt{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }}\Leftrightarrow{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\sqrt{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }\geqslant\left(\mathrm{2}+\sqrt{\mathrm{2}}\right){xy}\:\left(\bullet\right) \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} \geqslant\mathrm{2}{xy}\:\:\:\left(\mathrm{1}\right) \\ $$$$\sqrt{{x}^{\mathrm{4}} +{y}^{\mathrm{4}} }\geqslant\sqrt{\mathrm{2}{x}^{\mathrm{2}} {y}^{\mathrm{2}} }={xy}\sqrt{\mathrm{2}}\:\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\Rightarrow\left(\bullet\right) \\ $$$$ \\ $$
Commented by mathdanisur last updated on 02/Oct/21
Perfect dear Ser, thank you so much
$$\mathrm{Perfect}\:\mathrm{dear}\:\boldsymbol{\mathrm{S}}\mathrm{er},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$
Commented by amin96 last updated on 02/Oct/21
great
$${great} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *