Menu Close

Question-155657




Question Number 155657 by mr W last updated on 03/Oct/21
Commented by mr W last updated on 03/Oct/21
Q154594
Q154594
Answered by mr W last updated on 03/Oct/21
Commented by mr W last updated on 03/Oct/21
it′s obvious:  AE=diameter of circle  ΔABG∼ΔFDE∼ΔFCG  α+β=45°    CI=BI=DI=radius=R  BK=BI×cos 2α=R cos 2α  (((BK)/(CI)))^2 =cos^2  2α  similarly  (((DH)/(CI)))^2 =cos^2  2β=cos^2  (90°−2α)=sin^2  2α  ⇒(((BK)/(CI)))^2 +(((DH)/(CI)))^2 =cos^2  2α+sin^2  2α=1  (Δ_(ABG) /Δ_(GCF) )=(((BK)/(CI)))^2   (Δ_(EDF) /Δ_(GCF) )=(((DH)/(CI)))^2   (Δ_(ABG) /Δ_(GCF) )+(Δ_(EDF) /Δ_(GCF) )=(((BK)/(CI)))^2 +(((DH)/(CI)))^2 =1  ⇒Δ_(ABG) +Δ_(EDF) =Δ_(GCF)   ⇒yellow area=half of circle  ⇒green area=half of circle  ⇒((yellow)/(green))=1
itsobvious:AE=diameterofcircleΔABGΔFDEΔFCGα+β=45°CI=BI=DI=radius=RBK=BI×cos2α=Rcos2α(BKCI)2=cos22αsimilarly(DHCI)2=cos22β=cos2(90°2α)=sin22α(BKCI)2+(DHCI)2=cos22α+sin22α=1ΔABGΔGCF=(BKCI)2ΔEDFΔGCF=(DHCI)2ΔABGΔGCF+ΔEDFΔGCF=(BKCI)2+(DHCI)2=1ΔABG+ΔEDF=ΔGCFyellowarea=halfofcirclegreenarea=halfofcircleyellowgreen=1
Commented by mr W last updated on 03/Oct/21
Commented by amin96 last updated on 03/Oct/21
Nice sir really greate
Nicesirreallygreate
Commented by puissant last updated on 03/Oct/21
WOW Mr W i appreciate..
WOWMrWiappreciate..
Commented by Tawa11 last updated on 03/Oct/21
Great sir
Greatsir
Answered by ajfour last updated on 03/Oct/21
Commented by ajfour last updated on 03/Oct/21
(A+D)+E+F = (A+E)+(D+F)  =(r^2 /2)(sin 2α+sin 2β)  =r^2 sin θcos (α−β)  =△_1   (B+C)+E+F=(B+E)+(C+F)  =(r^2 /2)(sin (90°+2α)+sin (90°+2β)  =(r^2 /2)(cos 2α+cos 2β)  =r^2 cos θcos (α−β)=△_2   hence for  θ=45°  ,  △_1 =△_2   ⇒  A+D=B+C  we thus exchange green A+D  with saffron  B+C  hence     saffron area=semi-circle area    saffron area=green area.
(A+D)+E+F=(A+E)+(D+F)=r22(sin2α+sin2β)=r2sinθcos(αβ)=1(B+C)+E+F=(B+E)+(C+F)=r22(sin(90°+2α)+sin(90°+2β)=r22(cos2α+cos2β)=r2cosθcos(αβ)=2henceforθ=45°,1=2A+D=B+CwethusexchangegreenA+DwithsaffronB+Chencesaffronarea=semicircleareasaffronarea=greenarea.
Commented by mr W last updated on 05/Oct/21
nice solution!
nicesolution!

Leave a Reply

Your email address will not be published. Required fields are marked *