Menu Close

Question-155701




Question Number 155701 by ajfour last updated on 03/Oct/21
Commented by ajfour last updated on 03/Oct/21
If the blue triangle is equilateral  find the radius ratio.  (the center of both circles lie on the     same vertical)
$${If}\:{the}\:{blue}\:{triangle}\:{is}\:{equilateral} \\ $$$${find}\:{the}\:{radius}\:{ratio}. \\ $$$$\left({the}\:{center}\:{of}\:{both}\:{circles}\:{lie}\:{on}\:{the}\right. \\ $$$$\left.\:\:\:{same}\:{vertical}\right) \\ $$
Commented by mr W last updated on 03/Oct/21
both circles have the same center.  radius of small circle r  radius of big circle R  R=(√(r^2 +(((2r)/( (√3))))^2 ))=r(√(7/3))  ⇒(r/R)=(√(3/7))=((√(21))/7)≈0.654
$${both}\:{circles}\:{have}\:{the}\:{same}\:{center}. \\ $$$${radius}\:{of}\:{small}\:{circle}\:{r} \\ $$$${radius}\:{of}\:{big}\:{circle}\:{R} \\ $$$${R}=\sqrt{{r}^{\mathrm{2}} +\left(\frac{\mathrm{2}{r}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} }={r}\sqrt{\frac{\mathrm{7}}{\mathrm{3}}} \\ $$$$\Rightarrow\frac{{r}}{{R}}=\sqrt{\frac{\mathrm{3}}{\mathrm{7}}}=\frac{\sqrt{\mathrm{21}}}{\mathrm{7}}\approx\mathrm{0}.\mathrm{654} \\ $$
Commented by ajfour last updated on 04/Oct/21
Thank you sir.  sir, what if s be side of △_(eq)  ,  with  ((s/r))=((s/r))_(max) ; (R/r)=?
$${Thank}\:{you}\:{sir}. \\ $$$${sir},\:{what}\:{if}\:{s}\:{be}\:{side}\:{of}\:\bigtriangleup_{{eq}} \:, \\ $$$${with}\:\:\left(\frac{{s}}{{r}}\right)=\left(\frac{{s}}{{r}}\right)_{{max}} ;\:\frac{{R}}{{r}}=? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *