Menu Close

Question-155969




Question Number 155969 by mathlove last updated on 06/Oct/21
Answered by MJS_new last updated on 06/Oct/21
a=(2^0 )^(1/(2014)) +(2^1 )^(1/(2014)) +...+(2^(2013) )^(1/(2014)) =  =Σ_(n=0) ^(2013) 2^(n/(2014))   b=Σ_(n=0) ^(k−1) 2^(n/k) =(1/(2^(1/k) −1))  ((b+1)/b)=2^(1/k)   ⇒  (((a+1)/a))^(133) =2^(7/(106))
$${a}=\sqrt[{\mathrm{2014}}]{\mathrm{2}^{\mathrm{0}} }+\sqrt[{\mathrm{2014}}]{\mathrm{2}^{\mathrm{1}} }+…+\sqrt[{\mathrm{2014}}]{\mathrm{2}^{\mathrm{2013}} }= \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\mathrm{2013}} {\sum}}\mathrm{2}^{\frac{{n}}{\mathrm{2014}}} \\ $$$${b}=\underset{{n}=\mathrm{0}} {\overset{{k}−\mathrm{1}} {\sum}}\mathrm{2}^{\frac{{n}}{{k}}} =\frac{\mathrm{1}}{\mathrm{2}^{\frac{\mathrm{1}}{{k}}} −\mathrm{1}} \\ $$$$\frac{{b}+\mathrm{1}}{{b}}=\mathrm{2}^{\frac{\mathrm{1}}{{k}}} \\ $$$$\Rightarrow \\ $$$$\left(\frac{{a}+\mathrm{1}}{{a}}\right)^{\mathrm{133}} =\mathrm{2}^{\frac{\mathrm{7}}{\mathrm{106}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *